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ABS TRACT 

This paper  d iscusses  severa l  approaches to scat ter ing from 
slightly rough, ve ry  rough, composite, and rough spherical  sur faces .  

Average incoherent scattering c r o s s  sections for  slightly rough 
su r faces  a r e  obtained using a perturbation technique for a perfect con- 
ductor,  and for  a surface ma te r i a l  which i s  homogeneous (with variable 
permeabili ty,  pry as well as permittivity, a r ) .  The resu l t s ,  co r rec t  
to the first o rde r ,  include polarization dependence, and par t icular  
solutions with curves a r e  presented for the ver t ical ,  horizontal, and 
c i rcu lar  s t a t e s .  They a r e  compared with measured  data.  The sca t te r -  
ing process  for this c lass  of surfaces is interpreted physically. 

Three optics techniques yielding resu l t s  for  very rough surface 
scat ter ing c r o s s  sections a r e  presented, and i t  i s  shown that they all 
give the same  solution for  Gaussian su r faces .  
perfectly conducting sur face  mater ia l s  a r e  t reated,  and polarization 
dependence is preserved .  
a r e  valid a r e  enumerated.  
ing mechanism for  this c lass  of surfaces a r e  discussed and shed valuable 
insight on the p rocess .  Curves a r e  shown for  backscattering, employing 
two probability models .  

Both homogeneous and 

The restr ic t ions under which the solutions 
The physical interpretations of the sca t te r -  

Surfaces consisting of both very rough and slightly rough 
s t ruc tu res  together,  t e rmed composite sur faces ,  a r e  analyzed, and an 
heuris t ic  physical derivation of their scat ter ing c r o s s  section is p re -  
sented.  Curves for backscattering c r o s s  section a r e  shown, and com- 
par i son  with measu red  resul ts  confirms the validity of this approach. 

Average backscattering c ros s  sections for rough spherical  s u r -  
f aces  a r e  presented.  
a r e  given fo r  slightly and very rough sphe res .  
application to planetary surface radar s ca t t e r  and to passive satell i te 
communications . 

Both the coherent and incoherent c ros s  sections 
These resul ts  have 

The la rge  volume of published ma te r i a l  on the subject is reviewed. 
The first two pa r t s  dealing with slightly rough and very rough sur faces ,  
r a the r  than r e t r a c e  detailed mathematical derivations available e lsewhere,  
a t tempt  to  accomplish five goals: ( i )  to  compare the various analyses 
a l ready  available , ( i i )  to  elucidate explicitly the approximations involved 
in each  approach, ( i i i )  to explain and in te rpre t  the physical process  be- 
hind the mathematics  producing the scat ter ing,  ( iv)  to  present  meaningful 
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closed form mathematical  solutions and curves ,  many of which have not 
appeared before,  for the scattering c r o s s  sect ions,  and (v)  to compare 
theory with measurements .  
t reat ing composite and rough spherical  sur faces ,  is new as far as  the 
Western l i t e ra ture  is concerned, and is based direct ly  on the resul ts  of 
the first two sections;  physical interpretation of the scat ter ing mechanism 
again is emphasized. 

The mater ia l  in the last two sect ions,  
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I. 

SCATTERING FROM SURFACES WITH DIFFERENT 
ROUGHNESS SCALES; ANALYSIS AND INTERPRETATION 

INTR ODU C TION 

Serious attempts to analyze the scattering of electromagnetic 
waves by rough surfaces  and interfaces did not begin until about 1950. 
Research  on this subject was stimulated to a large extent by an a c -  
cumulation of measured  data on radar  scattering f r o m  t e r r a in  and the 
sea  which was made during and immediately a f te r  World War 11. 
Another stimulating factor was the significant expansion and dis  - 
semination of knowledge in the a rea  of applied s ta t is t ics  which took 
place in  the decade before 1950. 

Since then, analysis of rough surface scattering has  made use of 
one of two c l a s ses  of surface model. The first ,  which we shal l  t e r m  
the geometr ical  model, deals with sur faces  made up of given determin- 
i s t ic  shapes,  but a r ranged  or  distributed in  a random fashion; d i s t r i -  
butions of hemispherical  bosses  on a plane is an example of such a 
model  analyzed by Twersky (1957) .  
the s ta t is t ical  model, t r ea t s  the roughness height itself 
var iable  f r o m  the outset. 
the surface probability distributions o r  correlat ion coefficient. 
s ta t i s t ica l  models s e e m  m o r e  physically reasonable,  since nature 
r a r e l y  composes a surface of given deterministic shapes. 
second c l a s s  of rough surface models which concerns us here.  A 
review of the l i t e ra ture  covering many of the rough surface scattering 
investigations is given in  each respective section. 
r e su l t s  on other geometr ical  and statist ical  models can be found in 
Radar  C r o s s  Section Handbook (1968) .  

The second which we shal l  cal l  
a s  a random 

In the latter case,  one must  choose or  specify 
The 

I t  is this 

More details, and 

Statist ically rough surfaces  can be divided into three c lasses ,  
distinguished by the relative roughness height compared to wavelength: 
sl ightly rough surfaces ,  intermediate, and ve ry  rough surfaces.  The 
intermediate  c l a s s  has  roughness features which lie in  a region where 
nei ther  high nor low frequency aFproximations apply. 
rough and v e r y  rough c lasses  can be handled mathematically. 
general ,  d i f ferent  techniques must  be  employed to solve these two 
c lasses .  
behavior of rough sur faces  f r o m  a study of these two c lasses ,  and 
i t  is not unreasonable to expect that extrapolation between them can 
give valuable insight into sca t te r  f rom the intermediate c l a s s  of rough 
sur faces ,  

Only the slightly 
In 

Much information can be obtained about the scattering 
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Unfortunately, as with all new fields of investigation, e r r o r s  and 
oversights have occurred 
a r e a  often paralleled each other;  mos t  investigators ' ar t ic les  and 
resu l t s  went unnoticed by their  foreign counterpar ts .  Frequently,  
controversy in the l i terature  over  mis takes  o r  minor  details  tended 
to obscure the positive and common points of agreement .  
se r ious  of all, the emphasis on mathematical  detail has  in the 
majori ty  of cases  tended to obscure the simple physical concepts 
and processes  producing the scat ter ing.  Also, many invetigators 
were  not careful in stating the approximations and assumptions 
inherent in their  analyses;  this has often led to misinterpretat ion 
and misuse  by o thers .  

Soviet and Western developments in this 

Most 

We shall  attempt he re  to emphasize the physical explanation 
of the scattering mechanism behind the mathematical  formulations 
and solutions. 
res t r ic t ions which apply to each model.  Nonetheless resul ts  a r e  
presented in the most  general  form possible,  including the effects 
of polarization and surface constitutive p a r a m e t e r s .  Several  new 
resu l t s  and explanations a r e  offered for  slightly rough sur faces ,  
sur faces  consisting of composite roughnesses of severa l  sca les ,  and 
rough spherical  sur faces .  
existing analyses based upon different physical formulations a r e  
compared and shown to give identical r e su l t s .  

Care  is taken to outline the approximations and 

In the case  of very  rough sur faces  seve ra l  

To introduce the terminology we shal l  use ,  imagine that a 
The average perfectly smooth surface becomes slightly rough. 

specularly reflected field present  for  the smooth surface decreases  
somewhat as  the roughness grows; in addition there  i s  a sma l l e r  
amount of power sca t te red  away f rom the specular  direction due to 
the presence of the roughness.  
component while the la t te r  is te rmed the incoherent component of the 
sca t te red  field.  More precisely,  i f  one surface of an ensemble i s  
replaced by another statist ically similar m e m b e r ,  o r  i f  the sur face  
i s  translating slowly with respect  to t r ansmi t t e r  and rece iver ,  the 
coherent component is distinguished by the fact that the average value 
of the complex field(existing a t  and nea r  the specular  direction) i s  
non-zero.  The incoherent field fluctuates, however;  its phase angle 
is uniformly distributed; i t s  average value i s  ze ro .  
the average sca t te red  incoherent power ( o r  incoherent field magnitude 
squared)  is non-zero.  As the roughness s i ze  inc reases ,  the coherent 
component decreases  and the incoherent component i nc reases .  In the 
very rough surface l imit ,  al l  of the sca t te red  power i s  incoherent 
although it may  be sharply beamed in the specular  direction. This paper 

The fo rmer  we shal l  ca l l  the coherent 

, 

On the other  hand, 
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i s  concerned mainly with the incoherent sca t te red  power, except fo r  
the brief discussion below. 

The coherent field scat tered f r o m  a slightly rough surface is 
computed in the same  fashion as i t  is for  a smooth surface. 
t r a s t  to the incoherent component, i t  is highly dependent upon the 
shape of the illuminated area. It exhibits the famil iar  lobed s t ruc ture  
of a flat  plate, for example, while the incoherent component does not. 
Being concentrated around the specular direction, i t  can often be ignored 
in other directions. Experimentally, one can isolate the component by 
averaging f i r s t  and then squaring the received voltage. 
reflection coefficients for the slightly rough surface may be writ ten i n  
t e r m s  of the F r e s n e l  coefficients for  a smooth surface and a factor 
which accounts for roughness, 

In con- 

The specular 

This modification is discussed in Radar Cross  Section Handbook 
(1968) and can  be determined for a Gaussian surface height. 
ing electr ic  field reflection coefficients for  that case  a r e  

The resu l t -  

where  RI1 (€Ii) and R,(ei) a r e  the usual F resne l  reflection coefficients for 
the smooth surface and a r e  given in Eq. (35 ) .  
angle of incidence f r o m  normal,  ko = 2r/X is  the wave number,  and h 
is the rrns  roughness height. 
of roughness on the coherent scat tered field i s  contained in the ex- 
ponential factor. 
well-known Rayleigh criterion. 
component will be not significantly different f rom that of a smooth surface,  
and we cal l  the sur face  "slightly rough". 
the coherent component will be  insignificant, and we cal l  the surface 
"very rough". The coherent component disappears  a s  the roughness 
height, h, increases .  

The quantity 8i is the 

As can be seen f rom the above, the effect 

It i s  this factor which quantitatively expresses  the 
Clearly,  for koh < 1/4, the cohtzrent 

On the other hand i f  koh cos 8 i >  1, 

11. SLIGHTLY ROUGH P L A N A R  SURFACE 

A. Introduction 

In this section we will discuss  an important c lass  of random rough 
those having a small scale  of roughness whose rms roughness sur faces :  

height, h, is much l e s s  than wavelength. 
expressions f o r  the incoherent average scattering c r o s s  sections per  
unit su r f ace  a rea ,  TO, for various polarization combinations. As 

In particular we shal l  obtain 
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mentioned in the introduction, this c r o s s  section accounts for  m o s t  of 
the sca t te red  energy everywhere except i n  the neighborhood of the 
specular  direction. At and nea r  this direction, the coherent component 
is s t rong  and cannot be neglected.  

Slightly rough su r face  models  have been employed in  t he pas t  
based upon the tangent plane, o r  Kirchhoff approximation. The f i r s t  
such analysis w a s  that of Davies (1954). It has  been d iscussed  also by 
o ther  worke r s ,  and a readable t rea tment  is found in  Beckmann and 
Spizzichino (1963 Section 5 . 3 ) .  It should be mentioned, however,  that  
those models  a r e  often inapplicable to natural  s u r f a c e s .  The reason  is 
that the tangent plane approximation r e s t r i c t s  one to  sur faces  having 
2 ~ r p A  > > 1 ,  where p is the local radius of curva ture  of the sur face  
a t  all points.  This requi rement ,  along with the defining requi rement  
2~rh/X < < 1 generally descr ibes  a very smooth,  undulating su r face  with 
hi l ls  much l e s s  than wakelength in  height and hundreds of wavelengths 
apar t ;  the maximum slopes of these hi l ls  a r e  inf ini tes imal .  
m o r e ,  the model  fails in  the low frequency l imi t ,  s ince wavelength 
eventually becomes l a r g e r  than sur face  rad i i  of cu rva tu re .  Also, the 
model  shows no polarization dependence for  backsca t te r ,  as is typical 
of models  based upon the tangent plane approximation. Experimental  
evidence shows that r ada r  backsca t te r  does depend upon polarization; 
this will be discussed again l a t e r .  

What i s  

F o r  the above reasons ,  we sha l l  avoid u s e  of the Kirchhoff 
approximation for  the slightly rough sur face  model .  Instead, we w i l l  
r e s o r t  to a much l e s s  res t r ic t ive  model ,  but interestingly enough, a 
model  originally formulated before that of Davies by Rice (1951).  
Rice’s  formulation was  l a t e r  developed by Peake (1959) who der ived 
the scat ter ing c ros s - sec t ions .  This  model  i s  based on a perturbation 
approach.  Since the tangent plane assumption i s  not employed, all 
of the accompanying approximations such  as neglect of multiple s ca t -  
ter ing and shadowing a r e  avoided. The model  i s  therefore  valid f o r  
grazing incidence and sca t te r ing  angles ,  and exhibits meaningful 
polarization dependence. Most  important ,  i t  i s  valid in  the low f r e -  
quency l imit  and can  apply to any of the c l a s s  of very  rough su r faces  
to be examined l a t e r  when the frequency i s  low enough. 

Valenzuela (1967) recently extended the s a m e  technique to obtain 
expressions for  the second o r d e r  per turbat ion co r rec t ion  t e r m s  f o r  
backscat ter  f rom dielectr ic  and perfect ly  conducting s u r f a c e .  Only the 
f i r s t  o r d e r  t e r m s  of the solution a r e  obtained h e r e .  

The following a r e  the res t r ic t ions  on the c l a s s  of s u r f a c e s  to which 
the model  applies:  
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(a)  k ,<(X,Y)  < 1.0  , i. e.,  roughness height is smal l  compared 
to wavelength, A ;  <(x, y) i s  the height of the rough surface above the 
x-y plane, which i s  taken to be the mean  surface plane. 

(b) a</ax, at;/ay < 1.0, i. e., surface slopes a r e  relatively 
s ma 11. 

(c)  < al;/i3x2> = < a</ay2 >, i. e. , the roughness i s  isotropic. 
Here,  the brackets  < > indicate average over an ensemble of surfaces.  
This res t r ic t ion  i s  not essential  to the solution, but i s  employed he re  
for simplicity. 

(d) L >>  I ,  A, i. e.,  the dimension, L, of the illuminated a rea  
is much grea te r  than either the roughness correlat ion length, I , o r  
the wavelength. * 

Since the tangent plane approximation is not employed, the mutual 
interaction effects of shadowing and multiple scattering a r e  not over -  
looked. 
mechanisms. In fact, mutual interaction between neighboring hil ls  
is a n  important contributor when the distance between them i s  l e s s  
than a wavelength. 

Hence the slightly rough surface solution includes these 

W e  shall  obtain f i r s t  results for  the average incoherent scat-  
tering c r o s s  section per  unit surface a r e a  for  a surface of homogeneous 
ma te r i a l  having relative permeability, pr, and permittivity, er. In this 
respec t  our resu l t s  differ f r o m  the analysis of Rice (1951) , Peake (15159)~ 
and Valenzuela (1967),  who t reat  only dielectr ic  surfaces. The 
quantities pr and c r  m a y  be rea l  o r  complex, representing a loss less  
o r  lossy material .  Their  magnitudes may  be grea te r ,  equal to, o r  
l e s s  than unity, so  that the important c l a s s  of plasma media can  be 
included. A s  a special  case,  the imaginary pa r t  of er  can approach 
infinity, yielding the proper  resul ts  for a perfectly conducting surface. 
The notation of Rice (195 1) , Peake (1959), and Valenzuela (19671, will  

*Also implied in  the definition of scattering c r o s s  section i s  the rest r ic t ion 
that the observation point mus t  be in the f a r  field of the surface. 
absence of roughness, this requirement means that the distance to  the 
observation point, R, mus t  satisfy the c r i te r ion  R > 2L2/X. 
i t  can be shown (see Barr ick,  1965) that when one i s  considering the 
incoherent scat tered power from a roughened sur face ,  this requirement 
reduces  to R > 212b, where I is the roughness correlation length. 
Physically this means that one can be considerably closer  to a rough 
sur face  than a smooth one, since I < <  L by (d) above. 

In the 

However, 
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be  employed a s  much as possible here ,  s o  that r e a d e r s  wishing a m o r e  
detailed derivation c a n  r e f e r  to that work. 
polar ized incident plane wave wil l  b e  obtained here. Similar r e su l t s  
for ver t ica l  incident polarization will  be then wr i t ten  f r o m  inspection 
by  interchanging the ro l e s  of E and H, E =  and pro F r o m  these resu l t s ,  
the pertinent values  for the c i rcu lar  polarization s t a t e s  and for  l inear  
polarization s t a t e s  of a r b i t r a r y  orientation will  be given. 

The solution f o r  a horizintally 

B. Analysis 

The time convention used h e r e  wil l  be e 
Rice, Peake, and Valenzuela a r e  compatible with this i f  one rep laces  
i there  by -i, since they use the Fositive t ime convention. 
consider one par t icu lar  rough su r face  f r o m  an  ensemble of s ta t is t ical ly  
similar rough surfaces.  F o r  convenience, a s s u m e  the sur face  to be 
square ,  of length L, centered about the or igin and with i t s  mean sur face  
coinciding with the x -y  plane (Fig .  1 ) .  La te r  in  the analysis ,  the 
surface length wil l  be permi t ted  to approach infinity; the square  shape 

-iwt . The analyses  of 

Let  us f i r s t  

z 
I 

A 

+s or h 

L LU M I N AT E 0 
GH SURFACE 

Fig .  1.  Surface a r rangement  and sca t t e r ing  geometry - 
6 



of the surface is i r re levant  to the results,  but is a useful ar t i f ice  in 
performing the derivation. Under these conditions, the surface height 
can be expanded in the following Fourier  s e r i e s :  

m, n=-m 

21T where a = . 
L 

The r e a l  nature of the surface height requi res  that P(-m, -n) = 
Pa (m, n) where the a s t e r i sk  denotes complex conjugate. 
simplifying the analysis is to expand the scat tered,  o r  perturbed, field 
into a Four ie r  s e r i e s  with eigenfunctions eia(mxtnY) 
means  representing these fields as a superposition of plane waves in  
all directions. Remembering that the incident field i s  horizontally 
polarized in the y-direction a s  shown in Fig. 1, the total  E-field in  
f r ee  space above the surface is  then writ ten as follows: 

The t r ick  in  

Physically this 

t S 
Ex = E, 

t 
Y 

E = Ei t Er  t E!, 

where  Ei is the incident field, and Er is the reflected field f rom a 
perfectly smooth homogeneous surface.  
s c r ip t ,  s ,  a r e  then due solely to the presence of roughness, and may  
be considered the incoherent scat tered o r  per turbed f ie lds .  
quantities are given as  

The t e r m s  with the super -  

These 

ES = 12 A,,e ia(mxtny ) . .ib(m, n) z a 

X 
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m 

E: = Cmne  ia (mxtny)  .ib(m, n) z 

m, n=-a0 

In these equations, u = -iko = i-m, (Y = s i n  O i ,  Y = cos O i r  
and Eo i s  the e l ec t r i c  field strength of the incident field. R is the Y 
F re sne l  reflection coefficient for horizontal polarization, and is  
given by 

The function h(m, n) is  not independent of the wavenumbers in  the 
x and y direction, and i s  dictated by the requirement  that  each t e r m  of 
the above s e r i e s  m u s t  sa t i s fy  the wave equation. 
following r e  lation s hip : 

This r e su l t s  in the 

(5) b(m,n)  = J k o  2 - a 2 2  (m t n2) = i J u 2  t a' (m2 t n2)"  

The objective is to der ive  A m n r  Bmnr and C,, in terms of 
P (m,n )  and all of the above parameters .  
perturbation technique and the detai ls  are  s i m i l a r  to those of Rice, 
Peake, and Valenzuela. Briefly, these t h r e e  coefficients a r e  obtained 
by expanding all quantit ies possible into s e r i e s ,  each t e r m  of which 
involves a higher power of the smal lness  p a r a m e t e r s ,  which a r e  taken 
to be ko5, aL/ax, and at;/ay. 
quantit ies a r e  small, and consequently only the f i r s t  t e r m  of these 
s e r i e s  need be retained. The abovc th ree  unknown coefficients (as 
wel l  as  three other  unknown coefficients, G,,, H,,, I,, which 
represent  the scat tered fic~lds inside the sur face  mater ia l )  a r e  
obtained from six equations, four of which come f r o m  the boundary 
conditions f o r  the E and H fields at the in te r face  z = <, and two of 
which a r i s e  f r o m  the divergence conditions on  each  side of the interface.  

This  is  done b y  a s tandard 

By assumptions (a) and ( h ) ,  these 
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The three  des i r ed  coefficients Amnr Bmnr and Cmn a r e  then 
c o r r e c t  to the first o rde r ,  io e., the neglected t e r m s  a r e  at  l eas t  of 
o r d e r  ko<, a</ax, o r  a</ay with respec t  to the r e su l t  shown. The 
t e r m s  of the next h.igher o rde r  a r e  der ived by Rice (1951)  and 
Valenzuela (1967)  for perfectly conducting and dielectr ic  sur faces ,  
but they a r e  not given here. 
these coefficients i s  d i rec t ly  proportional to P ( m - v ,  n), 
n - th  coefficient in the Four i e r  expansion for  the surface itself, 
( v  = ko s i n  Oi/a, and is  taken to  be an integer here ,  i. e., the 
possible direct ions of incidence a re  quantized for  the moment. 
However, i n  the l imi t  a s  a = 2r/L -t 0 with L - 00, v becomes 
large,  and thus i t  i s  possible to  approximate i t  by the neares t  integer 
with negligible e r r o r ,  ) 

Also i t  should be  noted that each of 
the m - v ,  

- 

Up to now, no restr ic t ions have been placed on the nature of 
the surface,  The sur face  m a y  i n  fact  b e  determinis t ic  o r  periodic. 
Fo r  example in  the case  of a one-dimensional sinusoidal surface of 
per iod L, the expansion fo r  the surface,  < ( x ) ,  degenerates  to the 
si tuation where P(j, k) 
c a s e  was solved long ago by Lord Rayleigh (Dover, 1945). To gain 
insight into the scat ter ing process  fo r  the slightly rough surface,  i t  
is instruct ive to point out a fact  about this surface,  
of all but two of the coefficients P(m-v, n) means that the coefficients 
fo r  the sca t t e red  field expansions of Eqs. (3b) ,  (3e) i. e, , Amna 
Bmn9 and Cmn, all vanish except when n = 0 and m = v * 1. In other 
words,  the sca t te red  field consis ts  of only two plane waves, propa-  
gating in two direct ions determined by the direct ion of incidence and 
the wavelength-to-surface period. These waves a r e  both in the plane 
of incidence (i. e., x-z  p lane) ,  and the scat ter ing angle i s  determined 
by the equation s in  8, = sin 8i  - A/L. 
waves ex is t  physically only when 1 s in  8 ,  I = I sin 8 i  -f X/L I < 1; when 
X/L i s  such that this inequality is  not satisfied,  thc propagation number,  
b (m,  n) i s  pure imaginary,  indicating an  evanescent o r  non-radiating 
mode. F o r  period much l a rge r  than wavelength, scattering takes place 
c lose  to the sFecular direction. 
s ca t t e r ed  plane waves diverge f rom the specular  direct ion until they 
r e a c h  grazing ( I  s i n  8, I = 1 ) ,  a t  which point the plane waves a r e  cut 
off. 
tude of the sinusoidal surface ( s o  long a s  i t  sa t isf ies  the "slightly rough" 
c r i t e r ion )  but by i t s  period compared to wavelength. 
a l so  exhibited by the random rough sur face  considered below. 

0 for j # f 1 and k # 0; this important 

The vanishing 

t It i s  important  to  note that these 

A s  X/L becomes l a rge r ,  the two 

Hence the scat ter ing directions a r e  determined not by the ampli-  

This behavior i s  

Before discussing the scat ter ing,  l e t  us  discuss  the p a r a m e t e r s  
involved i n  the s ta t i s t ica l  description of the sur face ,  5(x, y ) .  
and Root (1958)  employ Rice's ea r l i e r  work (1944,  1945) to show that 

Davenport 
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a random but periodic function of per iod L can be expanded in a 
F o u r i e r  s e r i e s  such as Eq. ( 2 ) s  where  the coefficients P ( m , n )  a r e  
random variables .  
become uncorrelated in  the l imit  as L - m . 
necessa ry  only that L > > 1 ,  i . e  ., the total sur face  length m u s t  be  
much g rea t e r  than the roughness cor re la t ion  length; this  i s  exactly 
res t r ic t ion  (d) above. Now, recal l ing that the mean  value of the s u r  
f ace  is zero, these conditions become. 

Going fur ther ,  they show that these coefficients 
Pract ical ly ,  i t  is 

j+z:or u ,  v = m ,  n 
(6b) <P(m, n) P(u,v)> = 

where  p = am = 27rm/L and q = an = 27rn/L. 
physically the roughness spec t r a l  density of the sur face ,  and p, q a r e  
radian wave numbers .  Using these equations, the following relation- 
ships  a r e  obtained. 

The function W(p,q) i s  
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where  T~ = X - X I ,  and Ty = Y-Y'. The quantity hZ , as mentioned e a r l i e r ,  
is the sur face  mean  squa re  height, and R(sx, T ~ )  i s  the su r face  height 
cor re la t ion  coefficient Relationship (7b) m e r e l y  s ta tes  that  the rough- 
ness  height spec t r a l  density and the sur face  height cor re la t ion  function 
a r e  F o u r i e r  t r ans fo rms .  

Now, le t  u s  determine the horizontal (h)  and ver t ica l  (v) com- 
ponents of the plane wave scat tered field in a given direct ion represented  
by the angles Os, +s ;  first i t  is necessary  to re la te  the wave numbers  
am and an of the exponentials of Eqs.  (4b)-(4d) to  the propagation con- 
s tan t  of the plane waves in spherical  coordinates .  This relationship 
is obvious: 

(8) am = ko s in  8, cos cpsy and an  = ko s in  8, s i n  @ s .  

Then the horizontal  arid ver t ica l  components of the sca t te red  plane 
wave in the direction corresponding to m y  n a r e  

ia (mx t ny) t ib(m, n)z (9 )  E i ( m ,  n) (-&n s in  qs  t Bmn C O S  q s )  e 9 

and 

S (9b) E v ( m ,  n) = ( A m n  cos 8 ,  cos q s  t B m n  cos 8, s in  q S  

ia(mx t ny) t ib(m,  n ) z  - Cmn s in  0 , )  e 

Let  u s  redefine these relationships in t e r m s  of quantities 
("hh and a v h )  which a r e  direct ly  proportional to  scat ter ing ma t r ix  
e lements ,  namely 

and 

The quantit ies ahh and "vh a re  determinable f rom Eqs .  (9 )  and the 
express ions  f o r  &n, Bmn, Cmn* They will  be given in simplified fo rm 
subsequently,  along with expressions for the other  two elements a h v  and 
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avv f o r  ver t ica l  incident polarization. 
the rough su r face  is  ref lected explicitly in the sur face  coefficients 
above, P(m-v, n ) .  The f ac to r s  a h h  and Qvh a r e  nonrandom, known 
functions. 
de te rmined .  
in  all of the plane waves between ml and m2, nl and n2. 
polarizations,  y ,  6, t h i s  is given by 

Note that the random nature  of 

At this point, the average sca t te r ing  c r o s s  sect ions can  be 
F i r s t ,  l e t  us  find the increment  in  average field intensity 

F o r  a rb i t r a ry  

m2 n2 

<P(m-v,  n)  P*(m-v, n)> 

where  use  i s  made of the orthogonal proper t ies  of the coeificients,  as  
s ta ted in  Eq. (6b) .  If the length of the sur face ,  L, is la rge  compared 
to wavelength, A ,  there  a r e  many such plane waves between ml and 
m2 (as well  as between nl and n2 ) .  The t e r m s  in the summation a r e  
then near ly  constant f o r  ml < m < m2 (as  well  as nl < n < n2 ) for  m2 

sufficiently near  m l ,  and the summation can  be rewr i t ten  

<P(m-v ,  n )  P* 

where  A m  = m2 - ml and On = n2 - nl . 
Using the above expression,  the increment  of intensity per  unit 

of solid angle, R s ,  i s  expressed  in t e r m s  of the Jacobian, nmAn/AQs . 

AmAn - - W[ ko(sin 0, cos  + s  - s in  q), ko s in  Us sin a% 
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Noting that R = s in  bs dbs d+s, the Jacobian is 

Hence the average field intensity at the receiver ,  o r  observation point, 
i s  the quantity in Eq. (13) multiplied by the solid angle subtended by the 
surface f rom the observation point. This is 

L2 cos 8 ,  
LARS = 

R2 
9 

s o  that 

The average scat ter ing c ross  section pe r  unit surface a r e a  at  the 
observat ion point and fo r  incident, sca t te red  polarization s ta tes  6 ,  y is 
given by 

W [  k,(sin Us cos +s - cos q), ko s in  8 ,  s in  . 

Restr ic t ion (c )  assumed that the surface roughness is isotropic e 

This means  that the height correlation function R ( T ~ ,  T ~ )  is a function 
only of the separation, r, between the surface points x, y and X I ,  yl, 

( i . e . ,  r = J(x-x')2 t (y-y'); = l m .  Hence, define 
X Y 

applicable when the roughness is  isotropic.  
n e s s  spec t r a l  density, W(p, q), i s  also symmetr ica l  in  p and g .  Define 

This means that the rough- 
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Then fo r  an isotropic su r face  the Four i e r  t ransformation between the 
roughness spec t ra l  density and the correlat ion function, as given in  
Eq.  (7b) reduces to  the following Hankel t ransform pa i r .  

PJ 

( 1 8 4  4h2 p ( r )  = Z I T  tw( 

and 
0 

Then Eq.  (16)  may  be rewrit ten 

where 

(1%) t = ko Jsin' E)i - 2 s in  Oi s in  o s  COS qs  t sin' Os 

When the average incoherent sca t te r ing  c r o s s  sect ion p e r  unit 
su r f ace  a r e a  i s  wri t ten as in  Eq. (19a),  the effect  of the sur face  rough- 
ness  is contained entirely in the factor h' I .  The dependence upon 
incidence and scat ter ing geometr ies]  polarization s ta tes ,  and sur face  
material propert ies  is contained in the f ac to r s  cos  Ui cos' 0, [aY61' 
As with all  objects whose s ize  i s  sma l l  compared  to  wavelength, the 
scat ter ing c r o s s  section va r i e s  inverse ly  as the fourth power of wave- 
length. 

2 

Let u s  now in te rpre t  Eqs .  ( 1 9 )  physically.  They indicate that the 
average intensity of the sca t te red  field i n  a given direct ion va r i e s  in  d i rec t  
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proportion to  the su r face  roughness spec t r a l  s t rength at  sur face  rough- 
nes s  frequency, t ( r a d i a n s l m e t e r ) .  The quantity, t, in  t u rn  is a function 
of the incidence and sca t te r ing  direct ions,  as given in  Eq. (19c) .  F o r  
example,  fo r  sca t te r ing  nea r  the specular  direction, t 0 ,  the sca t t e r -  
ing c r o s s  sect ion is direct ly  proportional to  the roughness spec t r a l  
s t rength a t  and nea r  DC. On the other  hand, the highest roughness 
spec t r a l  f requencies  which can affect the average incoherent s c a t t e r -  
ed power a r e  those a t  t = 2ko. 
+s = TT, i . e . ,  fo r  ba.ckscattering nea r  grazing.  Hence, the only possible 
sur face  roughness spec t r a l  frequencies which affect the average sca t t e r -  
ed power in any a rb i t r a ry  direction occur  in the range 0 < t < Zk,; any 
higher  roughness spec t r a l  frequencies present  in the su r face  can have 
no ef fec t  on the sca t te red  power,  at l ea s t  t o  the first o r d e r  perturbation 
theory used  h e r e  and subject t o  the res t r ic t ions  l is ted above. 
physical  interpretat ion of the scat ter ing p rocess  i s  s i m i l a r  to  that f o r  
the sinusoidal sur face  mentioned previously.  

nes s  cor re la t ion  coefficient, p ( r ) ,  and find the result ing spec t ra l  
densi t ies  w(t)  and the corresponding quantity I .  

This occurs  where  Q i  = 8, = T T / Z  and 

The 

Let  us now examine two fami la r  choices for the surface rough- 

(1)  Gaussian Surface Height Correlat ion Coefficient: 
p ( r )  = exp ( - r 2 / p 2  ) . 

Here ,  d is r e fe r r ed  to as the su r face  height correlat ion length.  
The quantity I for  this ca se  becomes 

Surfaces  having such a Gaussiar! surface height correlat ion coefficient 
a r e  smoothly curving with derivatives at all points.  
s q u a r e  slope of the surface at any point with the above cor re la t ion  
coefficient is 

The t o t 4  mean  

( 2 )  Exponential Surface Height Correlat ion Coefficient: 
p ( r )  = exp ( - l r l / t )  
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The quantity I i n  this  ca se  becomes: 

Surfaces with exponential correlat ion coefficients are jagged and 
have many ver t ica l  f a c e t s .  The mean  surface slopes and all higher s u r -  
face derivatives a r e  infinite, obviously because of these ver t ica l  face ts .  
As an example,  an urban area having buildings and houses comprising 
its scattering su r face  has  a sur face  height correlat ion coefficient which 
behaves like the exponential, especially nea r  the or ig in .  

It should be noted that f o r  Zkolc l ,  the behavior of I f o r  the two 
correlat ion coefficients is not significantly different,  except for  a 
factor  of 2 .  Nor  are the above two correlat ion coefficient models  
necessar i ly  the m o s t  applicable in  all  c a s e s .  
a model  which empirically fitted measu red  points for  the correlat ion 
coefficient of an asphalt surface was 

Peake (1960) found that 

where r is in c m .  
in this case I i s  a n  exponential function of t .  

By the Hankel t ransformation between I and p ( r ) ,  

C. Results fo r  Vertical  and Horizontal 
Polarization States 

We obtained above the average incoherent sca t te r ing  c r o s s  section 
f o r  a horizontally polarized incident plane wave and for  the horizontally 
and vertically polarized sca t t e red  components.  We left them in t e r m s  
of scattering mat r ix  e lements ,  .[ hh and ,,h, which a r e  determined by 
Eqs.  (9 )  and ( 1 0 ) .  The resulting c r o s s  sections and sca t te r ing  ma t r ix  
e lements ,  J h v  and ( Y  vv, for  a ver t ical ly  polarized incident plane wave 
may be found immediately by noting that a ver t ical ly  polarized plane 
wave (ver t ical  o r  @ directed E-f ie ld)  is identical  t o  a horizontally 
directed H-field vec tor .  Hence the quantit ies '71 hv and (7 vv may be 
obtained f r o m  0 vh and .I hh by interchanging the ro les  of the relat ive 
constitutive constants, c r and pr ,  and employing c a r e  i n  observing 
the result ing s igns of the E-f ie ld  vec tors  f r o m  a knowledge of the H- 
field vec to r s .  (The right subscr ipt  r ep resen t s  the polarization s ta tc  
of the incident wave and the le f t  subscr ip t  r ep resen t s  the des i red  s c a t -  
te  r ed  wave . ) 
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1 .  Bistatic scat ter ing mat r ix  elements 
for homogeneous surface 

In the above expressions,  C y  and p r ,  the relative surface ma te r i a l  
permitt ivity and permeability, may each be ei ther  real o r  complex 
(indicating loss less  o r  lossy mater ia l ) ,  and be e i ther  grea te r ,  equal to, 
o r  less than unity in magnitude. 

2 Backscattering matr ix  e lements  for  
homogeneous surf ace 

The above elements a r e  readily reduced to the case  of back- 
scat ter ing where +s = 'TT and os = %. 

and 
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3. Bistatic scat ter ing ma t r ix  elements 
fo r  Derfectlv conducting surface 

The scattering matrix elements  f o r  a perfectly conducting sur face  * 
may be readily determined f r o m  Eqs.  (23) by putting pr  = 1 and E r  - co; 
this i s  evident f r o m  consideration of the basic  boundary conditions €or 
the two cases .  

4 .  Backscattering ma t r ix  elements for  
D e  rfectlv conducting surface 

Here again, w e  s e t  + s  = IT and Os = bi i n  the above equations. 

1 t sin' y 
CY vv = cos2 ui 

* 
Actually, a perfectly conducting sur face  implies  that  the imaginary 
pa r t  of approaches iufinity; the s a m e  resu l t  is obtained for  e i ther  
l imit ,  however. 

18 



The average incoherent scattering c r o s s  section per  unit surface 
a r e a  is now obtained using Eqs.  (19) along with the proper  scat ter ing 
ma t r ix  elements,  ~1 y 6  , f o r  the desired combination of ver t ical  and 
horizontal polarization s t a t e s .  These a r e  given above. The factor I 
used in  Eq. (19a) is given in t e rms  of the surface roughness spec t ra l  
density, as discussed previously and shown in Eq. (19b).  

Two outstanding fac ts  are in evidence from the above equations 
f o r  the important case  of r ada r  backscattering. 
c r o s s  polarized components a r e  zero .  It should be pointed out, how- 
ever ,  that these components, as indicated above, a r e  zero  only to  the 
first o r d e r .  and CJ& a r e  pro-  
portional to the m e a n  square  height and slope, ko hZ and s2, with 
respec t  to uhh and UGv.  An expression f o r  these t e r m s  is derived by 
Valenzuela (1967). 
kO4, while the next o r d e r  t e r m s  derived by Valenzuela a r e  of o rde r  ko6 
in frequency. 
frequency l imit .  
ver t ica l  and horizontal s ta tes .  
g rea t e r  than the horizontal for 
where  they a r e  equal ( i . e . ,  0, = 0 )  . 
mentally,  but previous theories based upon the l e s s  accurate  tangent 
plane approximation have failed to show any such difference.  
( Davie s , ibid . ) . 

F o r  one thing, the 

The next o rde r  neglected t e r m s  in uo 
2vh 

0 

The lowest order  t e r m s  retained he re  vary  with 

Thus our resul ts  indeed represent  the solution in the low 
The second fact  i s  that backscat ter  differs for  the 

The ver t ical  component is always 
> I prl  , except a t  normal  incidence 
This fact has  been observed experi-  

Plots  showing the average incoherent backscattering c r o s s  section 
p e r  unit sur face  a r e a  a r e  presented in F ig .  2 for perfectly conducting 
su r faces  along with dielectric sur faces .  
ver t ica l  and horizontal polarization s ta tes  a r e  given. 
sect ions a r e  normalized by dividing by koZ h2 . 
coefficient model given above was used with two relative correlation 
lengths (i . e .  , koL = 1 .O and koP = 5 . 0 ) .  
not significantly different in shape from those for kol = 1.0 ,  but the 
magnitude of the c r o s s  section itself var ies  in direct  proportion to ko2I2, 
as seen  from Eqs. (19a), ( 2 0 ) ,  and ( 2 2 ) .  Note that as correlation length 
( i  . e .  , koL) increases ,  m o r e  of the backscattered power i s  concentrated 
nea r  the specular  direction at normal incidence and l e s s  near  grazing. 
This is physically reasonable, because surfaces  with a given mean 
roughness height, h 2 ,  a r e  smoother when the roughness height c o r r e -  
lation length, 1 ,  is longer.  This can be seen  from Eq. ( 2 1 )  for the 
m e a n  square  slope of a rough surface.  

The c r o s s  sections for both 
These c r o s s  

The Gaussian correlat ion 

The resul ts  for koP < 1 .O a r e  
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Fig .  2 .  Average incoherent backscattering cross  sections per unit 
area with linear polarization states from slightly rough 
surface model v s .  incidence angle for Gaussian surface 
height correlation coefficients, normalized to ko2h2 
( 1 )  kol = 1 ,  vertical polarization states,  ( 2 )  koi = 1 . 0 ,  
horizontal polarization states,  ( 3 )  kol = 5 .0 ,  vertical 
polarization states,  (4)  kol = 5 . 0 ,  horizontal polarization 
states.  
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D. Results fo r  Circular  Polarization States 

It is relatively easy to t ransform from the ver t ical  and horizontal 
polarization s ta tes  to the c i rcu lar  polarization s ta tes  by using s tandard 
ma t r ix  methods.  
CY vh, 
preserving both proper  relative amplitudes and phase differences.  
Hence, a s e t  of analogous elements applicable for  c i r cu la r  polarization 
are determined and given below f o r  u se  in Eq.  (19a).  

As mentioned previously, the elements  01 vvJ Cy hh, 
and C( hv a r e  directly proportional to scat ter ing ma t r ix  e lements ,  

* 1.  Bistatic scat ter ing mat r ix  e lements  

The quantities on the right side of these equations are given in 
homogeneous surface ma te r i a l  o r  by Eqs .  (25 )  for  a Eqs . (23) fo r  a 

perfect ly  conducting surface.  

* The right subscr ip t  represents  the polarization s ta te  of the incident 
wave and the left subscr ipt  represents  that  of the des i red  sca t te red  
wave.  
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2 .  Backscat ter ing ma t r ix  e lements  

In the c a s e  of backscattering, i t  was  shown in Eqs.  (24) that 
Clvh = ahv = 0 .  Hence the above elements  reduce to  the following: 

In this case,  the elements  on the right side a r e  given by Eqs.  (24 )  for  
a homogeneous sur face  m a t e r i a l  and by Eq. (26)  for  a perfectly con- 
ducting su r face .  

Physically,  "RL and "LR rep resen t  the "polarized" components 
in  the sca t te red  field;  for  backscat ter ing f rom a smooth sur face  o r  
symmetr ic  object, the sca t te red  c i r cu la r  s t a t e  i s  always opposite 
s ense  from that  of the incident c i r cu la r  s t a t e .  "Depolarization", then, 
appears  in the elements  ~ L L  and ~ R R ,  represent ing the sca t t e red  
c i r cu la r  s ta te  of the s a m e  sense  as the incident s t a t e .  It i s  important  
to note that depolarization occurs  for  the c i r c u l a r  s ta tes  for  back- 
scat ter ing even though i t  does not occur  for  the l inear  s t a t e s  ( i  . e . ,  
ahv = Clvh = 0 ) ;  this i s  due to  the non-zero difference between "hh 
and Cy.,,. 

Curves showing the normalized average  backscat ter ing c r o s s  
section per  unit sur face  a r e a  as a function of incidence angle a r e  
presented i n  F ig .  3 .  
su r faces  for  both the "polarized" and "depolarized" components .  The 
Gaussian sur face  height cor re la t ion  coefficient model  i s  used with two 
values of the cor re la t ion  length, koP = 1 .O and 5.0. 
emphasized again that all of these cu rves  w e r e  der ived f rom a f i r s t -  
o r d e r  perturbation theory; higher o r d e r  t e r m s  i n  k,h and s ( re la t ive  
rms roughness height and s lope)  have been neglected-  

These r ep resen t  perfect ly  conducting and dielectr ic  

It m u s t  be 
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Fig .  3 .  Average incoherent backscattering c r o s s  sections pe r  
unit a r e a  with c i r cu la r  polarization s ta tes  f rom slightly 
rough sur face  model v s .  incidence ang1.e for  Gaussian 
sur face  height correlat ion coefficient, normalized to 
ko2h2 . 
( 2 )  k,P = 1 . 0 ,  s a m e  sense  polarization s ta tes ,  
( 3 )  koP = 5.0,  opposite sense polarization s t a t e s ,  
(4) kol = 5 . 0 ,  s ame  sense  polarization s t a t e s .  

( 1 )  k d  = 1 . O ,  opposite sense  polarization s ta tes ,  
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E. Results fo r  Arbi t rary Linear  
Polarization States 

In many experimental situations, the transmitt ing and receiving 
antennas employ l inear  polarization s ta tes ,  but they m a y  not necessar i ly  
be oriented along ei ther  the ver t ical  o r  the horizontal polarization 
directions defined by the surface coordinate sys tem.  Define qi as the 
angle between the unit vector  8i and the des i red  incident E-field com- 
ponent in the directign towazd the unit vector  +i. 
way with respect to 8 s  and +S 
bistatic scattering can be writ ten 

A 
Define qs in the s a m e  

q sqi 
Then the ma t r ix  element a for  

1 .  Backscattering with aligned and 
crossed  l inear  polarized antenna 

Often the t ransmi t te r  and rece iver  antennas a r e  aligned so  that 
qs = qi. 
this,  ?lS = qi t 1~12. 
avh = ahv = 0 f o r  backscattering, we a r r ive  at  the following two elements:  

F o r  the receiver  antenna polarization direction orthogonal to 
Employing these angles and a l so  the fact  that 

and 

These elements can  be used in Eq. (19a) t o  determine the back- 
The elements ahh and a,, to be used in the scat ter ing c ros s  section. 

r ight s ide of the above a r e  given in Eqs.  ( 2 4 )  for  a homogeneous 
su r face  mater ia l  and Eq. (26 )  for a perfect ly  conducting su r face .  
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2 .  Angularly averaged backscattering 
with aligned and crossed  l inear  
Dolarized antennas 

In many cases  aligned and crossed  l inear  transmitt ing and 
receiving antennas may  be employed, but the antenna angle, qi, with 
respect  to the surface ver t ical  may be rotating and unknown at a given 
instant of t ime.  This may  a r i s e  i n  the case  of satell i te observations 
of a planetary sur face .  In other situations i t  can resu l t  f rom uncon- 
trollable Faraday rotation of polarization due to the ionosphere.  An- 
other situation where an average quantity is des i red  is the case  where 
a relatively short  pulse of l inear  polarization sweeps past  a planetary 
sur face ,  illuminating an annular portion of the sphere .  The angle, qi, 
between the l inear  direction and the local plane of incidence at a given 
point on the annulus var ies  continuously between 0 and 2rr in  this ca se .  

In the above cases ,  the quantities desired a r e  IOqiqi [" and 
laqita/2,  , averaged by integrating over q i  f r o m  0 to 21-r and 
dividing by 21-r. These quantities become 

and 

The notation Re(x) denotes the rea l  pa r t  of x .  

F.  Comparison with Measured Results 

It is difficult to find measured data  with which to compare the 
preceding theoret ical  resu l t s  for a slightly rough surface for  two reasons .  
(i) It is necessary  that roughness height be everywhere smal l  compared 
to wavelength. (ii) It i s  difficult experimentally to separate  the average 
coherent  sca t te red  power from the incoherent; in mos t  cases ,  no attempt 
is made  to do th i s .  F o r  backscattering, the coherent contribution to 
the total  power dominates near  normal incidence. The resul ts  presented 
in  this  section apply only to the incoherent scat tered power.  

Recently, average backscattering c ros s  section measurements  
w e r e  reported by Wright (1966) from 2 f resh  water  surface at X-band. 
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Capillary waves were  generated under controlled conditions such that 
the wave amplitudes were  small compared to r a d a r  wavelength. Return 
f o r  the both ver t ical  and horizontal states were  obtained, and a r e  shown 
in F ig .  4 as a function of incidence angle. 
curves ,  theoretical  curves  a r e  drawn, using the equations derived above 
and the pa rame te r s  of the water  sur face  est imated by Wright. 
( r  = 55(1 t i .55),  koh = .05, kol = 2. 
resul ts  were  presented not in t e r m s  of backscattering c r o s s  section p e r  
unit a r e a ,  but backscattering c r o s s  section in square m e t e r s .  Since the 
a r e a  of the illuminated sur face  was not given, the absolute value of u t v  
and crgh cannot be ascer ta ined.  Hence, the magnitudes shown in the 
figure a r e  made to conform to the theoret ical .  
tion is the agreement in functional dependence between the measured  
and theoretical  curves .  

Along with these measured  

These a r e  
It should be noted that the measu red  

The significant observa-  

Another s e t  of measurements  on an asphalt surface at  X- and 
Ka-bands allow another comparison with the model .  (See F ig .  5 ) .  
Actual measurements  of sur face  s ta t is i t ics  and dielectr ic  constant 
were  made  in this case  and used to compute the curves for  the slightly 
rough surface model, (Cosgriff, 1960) .  Again the functional dependence 
on frequency, angle, and polarization is in good agreement .  Even the 
somewhat poorer  agreement  in absolute value is reasonable in view of 
the la rge  number of surface pa rame te r s  which had to be est imated 
from rather  sma l l  samples .  

111. VERY ROUGH PLANAR SURFACE 

A. Introduction 

The remaining c l a s s  of rough sur faces  which can be t reated 
analytically i s  the one whose m e m b e r s  have a la rge  scale  roughness 
such that the local sur face  radii of curvature  over  near ly  all surface 
regions a r e  much grea te r  than wavelength. 
interest ,  the r m s  roughness height, h, will then also be larger than a 
wavelength. 
incoherent.  ( i .e . ,  the phase angle of the sca t te red  field becomes 
uniformly distributed between 0 and ~ T T ,  and hence the average value of 
the scat tered field is zero;  only the average sca t te red  power is non- 
zero . )  

In m o s t  ca ses  of pract ical  

Then all  of the sca t te red  power f rom such a su r face  is 

When this radius of curvature  c r i t e r ion  i s  satisfied,  the sca t t e r -  
ing problem can be solved by severa l  optics techniques. 
used properly,  they all lead to  the s a m e  re su l t .  
m o r e  than one approach to the problem l i e s  in  the physical insight into 

If these a r e  
The value of examining 
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F i g .  4 .  Measured average back- 
scat ter ing c ros s  section 
pe r  unit a r e a  f r o m  slightly 
rough f r e s h  water  surface 2 
a t  X-band v s .  incidence 
angle fo r  ver t ical  and hor i -  p -30 

zontal polarization s t a t e s .  02 
Dashed curves  represent  5 - 4 0  

slightly rough surface model 
using pa rame te r s  measured  .m 
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F i g .  5 .  Measured average backscattering c r o s s  section pe r  
unit area f rom slightly rough asphalt surface at  X- 
and Ka-bands vs .  incidence angle fo r  l inear  polari-  
zation s t a t e s .  Dashed curve is slightly rough s u r -  
face model using measured  pa rame te r s  p ( r )  = ( l + . ~ O r ~ ) - ~ / ~ ,  
where  r is in  cm;  kol 2' 0.085 at  X-band and 0.30 at 
K,-band; kol = Q 0.48 at X-band and 1 . 7  a t  K,-band; 

Q 4.3  t i o .  1 a t  X-band and 2.5 t i o  .65 at K,-band. - 
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the scat ter ing process  which each provides.  At present ,  th ree  different 
optics approaches have appeared in the l i t e ra ture .  Rather than r e t r ace  
a derivation in detail  he re ,  a cri t ique of these existing analyses will  be 
made ,  along with the physical explanation of each. Finally, the common 
resu l t s  of these analyses will be presented and curves for  two models 
will  be shown for  comparison. 

All of the three  optics approaches apply to  the c l a s s  of rough 
sur faces  which sat isfy (at  l eas t )  the following restr ic t ions:  

The local surface radii  of curvature  at near ly  every point 
on the su r face  a r e  considerably l a r g e r  than wavelength. 

a & / a x ,  a & l a y  1 . O ,  i .e  ., surface slopes are relatively 
sma.11. 
and multiple scat ter ing over  mos t  of the range of incidence 
and scat ter ing angles.  

< ( a G / a ~ ) ~ >  = <(ac/ay)2>,  i . e . ,  the roughness is isotropic .  
The restr ic t ion is not necessary  to obtain an answer,  but i s  
employed in this paper for  simplicity.  

Only when this i s  t rue  can  one neglect shadowing 

L > > P > > X, i . e . ,  the dimensions of the illuminated a r e a  
a r e  much grea te r  than the roughness correlat ion length, 1,  
which in turn i s  much grea te r  than wavelength. 
portion of the inequality i s  automatically fulfilled i f  (a)  is 
t r u e .  
of looking at  only a par t  of a hill o r  wave, but ra ther  i t  de-  
mands that s eve ra l  hills o r  waves be included i n  the illuminated 
a r e a .  

The second 

The f i r s t  par t  of the inequality precludes the possibility 

ko2h2 > > 1, i . e . ,  mean  square  roughness height, h2, is of 
the o r d e r  of, o r  grea te r  than, wavelength squared .  

The surface height correlat ion coefficient, p ( r ) ,  mus t  be 
parabolic in behavior at  the origin,  i . e  ., p ( r ) ; j l  - rz /I2 , 

and I i s  t e rmed here  the correlat ion length. 
where r is the separation between two points on t R e su r f ace  

The first two restr ic t ions above permi t  use  of the tan ent plane 
( o r  physical optics) approximation. This approximation i n v o h e s  writing 
the scat tered field at the sur face  as the product of the incident field and 
the proper reflection coefficient. Restr ic t ion ( f )  is imposed i n  o rde r  to 
avoid mathematical  difficulties which lead to e r roneous  resu l t s  when 
one employs a correlat ion coefficient whose behavior i s  l inear  a t  the 
origin,  (Barr ick,  1968).  The second, th i rd  and fourth rest r ic t ions a r e  
identical to those given previously f o r  the slightly rough su r face .  
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I 

Although the slightly rough sur face  analysis of the preceding pa r t  
takes into account multiple scattering and shadowing, the normal  optics 
techniques used f o r  very  rough surfaces ignore these multiple in te r -  
action effects.  Generally, they a re  higher-order  effects so long as the 
surface slopes a r e  not too precipitous and the scat ter ing angles a r e  not 
too close to  grazing. 
has  been computed, but shadowing correct ions have been formulated 
recently.  Beckmann ) 1965) first formulated the "shadowing function. " 
This was l a t e r  revised by Brockelman and Hagfors (1966) and Wagner 
(1967). 
fo r  angles of incidence and scattering m o r e  than 10' above grazing and 
an rms total  surface slope, tan-ls = tan-1(2h/f) ,  of l e s s  than 27". 
view of the rest r ic t ions placed upon the c l a s s  of surfaces  considered 
he re ,  shadowing correct ions will not be introduced in this paper.  

No known correct ion factor fo r  multiple scat ter ing 

The latter shows that the correct ion factor is l e s s  than 3 dB 

In 

B . Review and Interpretation 

1 .  Physical  optics approach 

The first approach to appear historically is a lso probably the most 
mathematically thorough and satisfying. By the same token, it probably 
sheds the leas t  physical insight on the sca t t e r  mechanism because of the 
mathematical  detail .  
expression f o r  the sca t te red  field. 
appearing in the integrand a r e  determined from the tangent plane approxi- 
mat ion mentioned above. 
problem for  a perfectly conducting sur face  was made by Isakovich( 1952) 
who employed a vector  physical optics formulation. 
to  have been overlooked by Western investigators,  fo r  Davies (1954) 
solves  the s a m e  problem by the same techniques, but employs a l e s s  
complete s c a l a r  formulation. Beginning about 1960, a variety of 
Western and Soviet investigators began to  extend these regults.  
these a r e  Hagfors (1960, l964), Beckmann (1963), Hughes (1962) ,  Fung 
(1964), Hayre (1961), Daniels (1961), Semenov (1965), and Stogryn (1967) 
Semenov appears  to have been the first to  have solved the problem for  
scat ter ing f rom a surface of homogeneous mater ia l ,  Qr,t.Lr, using a vector  
formulation, which accounts properly f o r  polarization. The resu l t s  of 
Semenov have been derived independently and simultaneously by Barr ick ,  
and the two are in agreement,  after some algebraic simplification of 
Semenov's r e su l t s .  
(although his notation is more  complicated), and hence serves  as a third 
check on Semenov's analysis.  

This method employs a physical optics integral  
The total  fields at  the surface 

The first comprehensive t reatment  of this 

This work appears 

Among 

Stogryn's solution is the same as that of Semenov 

Semenov expresses  the scat tered vector field (for both ver t ical  
* and horizontal incident polarization direct ions)  in  t e r m s  of a physical 

optics integral .  F o r  example, for an incident plane wave whose E-field 
is horizontally polarized, the integral, af ter  application of the tangent 
plane approximation, can be written as follows: (See F i g .  1 ) .  



where 

Ro = distance f r o m  origin to  observation point, 

r A A A - 
= x x  -t y y  t c ( x , y ) z  = distance f r o m  origin to  point 

on rough surface,  

A ki,  ffs - unit constant vectors  pointing in  direction of 
incidence and scat ter ing,  

sx, c y  - local surface slopes in x and y directions at 
surface point 5 ( x , y ) ,  ; . e . ,  8 5 / 8 x  and a C / a y .  

The factor F( Cx, 5 ) is a function of the local normal  to  the surface Y 
and of the local F r e s n e l  reflection coefficients a t  each surface point. 
can be expressed as follows: 

It 

where  

A A A  

= local unit normal  vec tor  to  surface at A -5xx - 5+ t (33d) n = 
point ~ ( x ,  y ) ,  

y i ,  y s  - local incidence and scat ter ing angles in planes of incidence 
and sca t t e r in swi th  respect  to loca l  su r f ace  normal ,  ( i  . e . ,  
cos yi = - &.n,  cos  ys  = fis.n), A 
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R,(yi), R,, ( y i )  - Fresne l  reflection coefficients at  local surface 
point 1: (x, y) with incidence angle, y; 

As one can observe,  the integrand consis ts  of the factor F(cx,Sy) ,  
which var ies  with the local sur face  slopes from point to  point on the 
surface,  and an exponential phase factor containing the phase difference 
between the local sur face  point and the sca t te red  field point. 
factor  is to be removed f rom the integrand as  a constant; the justification 
fo r  this is the stationary phase ( o r  specular  point) argument.  This 
argument maintains that for  la rge  ko in  the exponential factor ,  the only 
surface regions which contribute to  the integral  a r e  those smoothly 
curving portions which a r e  in a position to specularly reflect  into the 
des i red  scat ter ing direction. The direction of the sur face  normal,  
nspl and the local  incidence angle, y i  = y s  = L , at these specular  points 
a r e  readily determined by bisecting the angle between the incidence 
propagation direction and the desired scat ter ing propagation direction. 
The constant factor,  F(Cxs 
of the sur face  at these s p e z l l a r  goints. 

The f i r s t  

cys  ), is then evaluated using the slopes 

The remaining integral  containing the exponential phase factor 
is - not solved by the s a m e  specular point o r  stationary phase approach, 
however; the sca t te red  field i s  squared to give sca t te red  power o r  
intensity, and then it is averaged. Averaging consis ts  of multiplying 
the double integral  by the joint probability density functions for the 
sur face  height at  two different surface points and then integrating over 
these two random variables .  The o rde r  of integration is interchanged, 
and the integrand of the forrner double integral  is averaged first. This 
interchange is justified mathematically (See Middleton, 1960) so long as 
res t r ic t ion  ( f )  is applied. With the aid of res t r ic t ion (e ) ,  the remaining 
in tegra l  is solved in  a straightforward manner;  near ly  all of the above 
mentioned re ferences  c a r r y  out this la t te r  process  cor rec t ly .  

The s t ep  of averaging under the integral  sign, though mathe-  

It is a lso somewhat l e s s  than satisfying to  justify the 
matical ly  co r rec t ,  obscures  the physical understanding of the scattering 
mechanism.  
removal  of a complicated factor  in  the integrand by the specular point 
o r  s ta t ionary phase argument, but then never to actually employ this 
s ta t ionary phase principle to  solve the remaining integral .  However, 
the two approaches to  be discussed subsequently do justify the validity 
of this  procedure by actually showing that the specular  point theories 
give exactly the same  resul t ,  at least  fo r  a Gaussian distributed surface 
height.  

No one has  yet justified correct ly  a m o r e  exact method of evaluating 
This is obviously due to  th i s  in tegra l  than the stationary phase approach. 
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the extremely complicated form of the fac tor  F(5x ,5y) .  At leas t  two 
previous analyses have proposed al ternate  schemes  for  evaluating the 
integral .  Bar r ick  (1 965) suggested - averaging this factor  independent 
of the exponential factor;  hence, F(~X, cy)_would be removed as a con- 
s tant  evaluated at  the mean  slopes,  i . e . ,  F(0,  0 ) .  Fung (1965) proposed 
expanding the factor  i n  a s e r i e s  in ex, c y ,  and averaging each term 
separately.  One can show that the resultant s e r i e s  cannot be truncated, 
s ince higher o r d e r  t e r m s  a r e  of the same o r d e r  as the f i r s t  t e r m s .  
This i s  t rue  even for  vanishingly small values of surface s lopes,  C x  
and 5 . 
phase principle,  and therefore  both can have no theoret ical  justification. 

Both of these approaches a r e  inconsistent with the stationary 
Y .  

Recently, Kivelson and Moszkowski (1965) have shown that for  
backscattering one can reduce the physical optics integral  directly to 
the probability density function for  the sur face  normal;  this thus 
provides a valuable connection to the ray optics approach of the next 
section. Gaussian su r face  s ta t is t ics  a r e  not necessary  for  their  
analysis,  but the generalized form selected for  the i r  conditional s u r -  
face height probability density function is s t i l l  somewhat res t r ic t ive .  
The joint probability density function which they form i s  then not 
symmet r i c  in the two height random variables ,  5 and l,', as it mus t  
be,  except for the special  ca se  of Gaussian s ta t i s t ics .  

2 .  Rav optics approach 

Recently, Muhleman (1964)  brought an older  - but be t te r  under- 
stood-theory to  bear  on the very rough sur face  problem. 
optics" approach (following his  terminology) provides a m o r e  readily 
and simply explainable interpretation of the scat ter ing process ,  even 
though mathematically i t  is l e s s  exact and elegant.  The rough sur face  
is initially approximated 3y a grid of small flat planar  e lements ,  all of 
which are connected to form the rough sur face .  Each element ref lects  
incident power specularly,  and the direction of reflection from a given 
facet  i s  determined by the direction of i t s  normal .  
of power scat tered into a given direction i s  directly proportional to  the 
number of facets whose normals  a r e  pointed in the proper  direction 
( i . e  ., the direction bisecting the angle between the incidence and sca t -  
ter ing directions) divided by the total number of facets .  This quantity 
i s  the probability density function f o r  the sur face  normal .  
expressible  in t e r m s  of the probability density function for  the sur face  
slopes,  since the surface slopes a r e  perpendicular  to the local  normal .  

The "ray 

Hence the amount 

It i s  

Muhleman dealt  with the problem of bistatic scat ter ing f r o m  a 
perfectly reflecting surface,  but the problem of the homogeneous su r face  
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mate r i a l  is jus t  a s  easily solved. Recall  that  in the la t te r  case ,  the 
components of the local E-field incident upon a planar  facet in and 
perpendicular to  the plane of incidence each have different F r e s n e l  
reflection coefficients, R,, and R,. 
determine the ver t ica l  and horizontal reflection coefficients for  a 
properly oriented facet  which reflects power incident frop- direction 
$ into direction @s, 4 s  Vertical  and horizontal he re  re fer  to the 
polarization directions of incident and sca t te red  fields with respect  
to the mean  surface,  i . e . ,  the x-y surface,  and not with tcespect to 
the local surface facet .  
between the horizontelly polarized incident ( r ight  subscr ipt)  Find the 
vertically polarized reflected (left Subscript)  E-field components with 
m e a n  incidence and scattering angles kJi, o s ,  
efficients are defined in  the s a r n e  manner .  Then assuming that sca t -  
ter ing in these directions is produced by planar facets properly 
oriented to specular ly  reflect, these ver t ica l  and horizontal reflection 
coefficients are determined from straightforward geometrical  con- 
s iderat ions.  They are:  

Referring to F ig .  1, we can 

- 
Let u s  define Rvh as the reflection coefficient 

The other th ree  co- 

s in  0; s in  0s sin2 +s R,, ( L  ) t a2 a, R,(L ) 
Rhh = 

4 sin2 L cos2 L 

s in  8i sin 8 ,  sin‘ $ s  RL ( L) - a3 s in  B i  R,,  ( L )  
R,, = - ’ 

4 sin2 L cos2 L 
2 
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and where L is  the local angle of incidence at the specular  reflecting 
facets,  and is given by 

The quantities a2 and 
subsequently in Eqs (54). 
for backscattering reduce to the following: 

involve the scat ter ing angles and a r e  given 
AS a check, the above reflection coefficients 

Since polarization differences were  not considered by Muhleman, 
the above quantities squared mus t  be inser ted  as fac tors  in his resu l t s  
to  obtain power scat ter ing for the ver t ical  and horizontal  polarization 
directions as defined in F i g .  1 .  

Hagfors (1966) showed that the probability density function for 
sur face  slopes appearing in Muhleman's resu l t  fo r  sca t te red  power 
can be e a s i l y  re la ted to the surface height probability density function 
when the surfaces  a r e  Gaussian. In doing so ,  he showed that for  
backscattering, one obtains the s a m e  resu l t  a s  f rom the physical 
optics analysis discussed above. It i s  readily shown that the two 
methods are equivalent fo r  bistatic scat ter ing a l so .  [Note, i t  w a s  
pointed out by Hagfors that due to  an oversight,  one m u s t  divide 
Muhleman's result  by the cosine of the angle between the local surface 
normal  and the mean plane normal ,  i .  e . ,  by 

A A  cos 0; t cos o s  
(38 )  cos ( n ,  z) = 2 cos  L - 1  

The ray optics approach sheds much needed insight into the 
scat ter ing process  f rom a rough sur face .  As a r igorous derivation, 
however, the method can  be ser iously questioned. Such an approach 
considers  only sca t te red  energy o r  power, and not the fields themselves;  
hence phase relationships between fields f r o m  different regions a r e  
ignored from the outset .  The r a y  optics method a s s u m e s  specular  
reflection from a small planar  facet in the fo rm of a non-diverging 
tube o r  paral le l  r ays .  
shr ink to zero, the paradox between r a y  optics and modern  geometr ical  
optics theory becomes obvious. Diffraction effects and pa t te rns ,  due to 

La te r  when one pe rmi t s  the planar  face t  to  
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phase interference,  and divergence of rays  due to  curved phase fronts 
a r e  ignored. The method, nonetheless, s e r v e s  our  purpose he re  be- 
cause,  under the res t r ic t ions  mentioned previously, we a r e  dealing 
with incoherent sca t te red  power.  This means  that i t  is sufficient to 
add power sca t te red  f r o m  different  portions of the surface,  r a the r  
than the fields themselves .  
problem, and provides needed insight into the scat ter ing p rocess .  

Hence ray optics is justified for  this 

3 .  Geometrical  optics o r  s ta t ionarv 
phase approach 

The third approach is the application of the stationary phase 
principle to  the Kirchoff integral  fo r  the complex sca t te red  field. 
The resul t  shows that scat ter ing f rom a portion of a quadric curving 
surface does indeed radiate specularly . 
of such a curved sur face  is 

The scat ter ing csoss  sections 

(39) 

where R1R2 is the product of the two principal radii  of curvature  at 
the specular  o r  s ta t ionary phase point. 
sists of many such specular  points. 
dancing specular  points on a rippling lake surface on a moonlight night. 
However, nei ther  of the previous theories  directly re la te  the total  
sca t te red  power to  the number of specular  points and their  radii  of 
curvature ,  even though the physical optics method justif ies the 
simplification of the integrand on the basis  that  this stationary phase 
principle is valid. It is therefore instructive to examine the scat ter ing 
problem formulated on this basis and note that one a r r ives  at the same  
resu l t  as the preceding two approaches.  In addition, this third 
technique provides fur ther  insight by explicitly de riving the average 
number of specular  points on a rough surface and their  average 
Gaussian curvature ,  R1Rz . 

A very rough surface con- 
Everyone has observed the 

Kodis (1 966) formulated the rough surface problem rigorously 
in this manner  and showed by stationary phase that the scat ter ing c r o s s  
sect ion fo r  a rough sur face  can be expressed,  as one intuitively expects,  
as follows: 

N 

i, j=1  
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where  the total number of specular  points i s  N and the Gaussian c u r -  
va ture  at the i - th  points is  RliRzi. The quantity +i - +j contains the 
path length difference between the i - th  and j - th  specular  points. 
Employing the res t r ic t ion  p,  h > X I  one can show that. for  a v e r y  rough 
su r face ,  the specular  points are  randomly and widely separa ted  in  
terms of wavelength, and the re fo re ,  gi  and + j  a r e  uniformly d i s t r i -  
buted. Hence the average  sca t te r ing  c r o s s  section becomes 

N 

Assuming now that one can ass 
the specular  points, o n e  has  

gn an average  Gaussian curva ture  to  

I’ , 

which one exptlcts for  incohercstit sc i t t t t~r ing.  
c r o s s  section pe r  unit area,  uo Y \  
s ta tes  : and y, can  now be exprcsstxd 

The average  sca t te r ing  
for  incident and sca t t e red  polarization 

(43 )  

where 

(44)  

is  the average numbrxr o f  specular  points p e r  unit ;ircJ;L and Ryri is  the 
reflection coefficient for thc su r face  at <i spc’cular point.  
ver t ica l  and horizontal polarization s ta tes  ( ; . e . ,  y ,  1 v, h ) ,  these  
coefficients a r e  given i n  Eqs.  ( 3 2 ) .  

For the 

Bar r i ck  (1968) used thc above formulat ion and obtained express ions  
for  n and < [  R l R z [ > .  
two approaches.  
among the var ious high frequency optics techniques applied rough s u r -  
faces  this third approach also provides valuable insight into the sca t -  
ter ing process ,  which i s  complementary to  that of the o ther  two- 

These. resu l t s  are identical  to those of the previous 
While confirming the g c n e r a l  validity o f  and s imi la r i ty  

In 
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I . .  

part icular ,  one finds that the average number of specular  points is 
proportional to the probability density function for  the surface slopes 
evaluated at the required slopes at  the specular  point; this quantity 
is grea tes t  where the local normal at  the specular  points (o r  bisector  
between incidence and scattering direct ions)  is near  the mean  normal ,  
o r  ver t ical .  This i s  reasonable f rom consideration of the moonlit lake 
example.  
specular points, on the other hand, becomes g rea t e r  as  the local 
normal  is fa r ther  removed from the mean  normal.  

The mean  value of the radii  of curvature  product at  the 

C. Results 

1 .  General  form 

Since the solutions for all th ree  approaches a r e  essentially the 
s a m e  for  the Gaussian surface,  we shal l  present  one resul t  he re .  
It is  expressed in a form which proceeds naturally f rom the physical 
optics approach and is obtained from the derivation of Semenov (1965). 
The average scat ter ing c r o s s  section p e r  unit surface a rea ,  fo r  
incident polarization s ta te  5 and scat tered s ta te  y, is writ ten as follows: 

(45) 

The quantity py6 has  exactly the same  significance as a Y 6  for the 
slightly rough surface model: it is directly proportional to the sca t t e r -  
ing matrix element relating the incident field of polarization s ta te  6 
to the sca t te red  field component of polarization s ta te  y .  
wi l l  be given below for  the ver t ical  and horizontal as well as c i rcu lar  
s t a t e s .  

These quantities 

The factor  J is related t o  the roughness s ta t is t ics  in the following 
manner:  

The quantity t is a function of the scattering ar,gles and i s  given in 
Eq. ( 1 9 ~ ) .  The symbol u ,  a l s o  a. function of these angles, is defined as 
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The function Mcc  ~ ( i u ,  i v ; r )  is the charac te r i s t ic  function of the sur face  
height random variables  5 and C', measured  at sur face  points (x, y)  
and X I ,  y') .  
probability density function, P(& a 5 ' ;r); r is the horizontal  distance 
between the surface points; 

(Formally,  it is the double Four i e r  t ransform of the joint 

Therefore ,  in o r d e r  t o  obtain a closed f o r m  resu l t  for  the scat ter ing 
c r o s s  section, one must e i ther  know o r  assume a form f o r  the sur face  
height joint probability density function. ( F o r  the slightly rough s u r -  
face,  recal l ,  one has to choose a form fo r  the sur face  height correlat ion 
coefficient. ) We sha l l  se lec t  two common probability density function 
models f o r  the sake of comparison and find the quantity J .  

a. Gaussian sur face  height 
joint probabilitv densitv 

Using the standard Gaussian joint probability density function 

along with rest r ic t ion ( f )  on the form of the form of the cor re la t ion  
coefficient p ( r )  nea r  the origin and res t r ic t ion  ( e )  on the s i ze  of the 
mean  square roughness height, h 2 ,  compared to wavelength, we can 
readily solve Eq. (46) for  J .  

where 

4h2 
8 2  = 

is the total  mean square  slope of the rough su r face .  
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b.  Exponential surface height 
joint probability density 

F o r  the sake of comparison with the preceding model, we select  
an exponential probability density model of the following form: 

Equation (46) f o r  J is solved using the same restr ic t ions as with the 
preceding model .  

The optics techniques show that for very  rough surfaces ,  the 
only parameter  reflecting the degree of roughness in the scattering 
c r o s s  section i s  s ,  the r m s  roughness slope.  
height, h, does not appear explicitly, and as such i s  not easily 
determined from observations of average scat tered power f rom such 
a sur face .  

The r m s  roughness 

2 .  Polarization dependence 

The elements py6 w i l l  now be given for severa l  polarization 
states. 

a .  Vertical  and horizontal s ta tes  

F o r  the ver t ical  and horizontal polarization s ta tes ,  the scattering 
m a t r i x  elements pw, phh, Pvh, and Phv may  be found upon simplifi- 
cation of Semenov's resu l t s ,  o r  from ei ther  of the other two approaches 
to the problem. They a re :  
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where R,, (q), R,( 1) and 
and al, a2, %, q are given below. 

are  defined previously in Eqs .  ( 3 5 )  and (36) 

( 5 4 4  a1 = 1 t s in  Ui s in  b S  cos  + s  - C O S  e i  C O S  tis , 

(54b) a2 = cos  H i  s in  8 ,  t s in  tli cos  8, cos  +s  , 

+ = cos e i  t cos e, ( 5 4 4  

From the above expressions and the two probability density 
models previously given, one can substitute the p ' s  and J into Eq.  (45) 
to  obtain the average scat ter ing c r o s s  section pe r  unit area.  

b .  Circular  s ta tes  and a rb i t r a ry  
polarized l inear  s ta tes  

The p 's  given above for the ver t ical  and horizontal  s ta tes ,  being 
directly proportional to  the scat ter ing m a t r i x  e lements ,  can  be sub- 
stituted into Eqs .  ( 2 7 )  of the preceding p a r t  to give the elements  PLR,  
PRR,  PRL, and PLL for  the c i r cu la r  polarization s t a t e s .  
and (30) of that section can  be used to give PqiTs for  l inear  polarization 
s ta tes  a rb i t ra r i ly  d i rec ted .  

Equations (29)  

3 .  Results for  backscat ter ing 

Backscattering i s  the mos t  important  and commonly occurr ing 
As such,  the above resu l t s  will be situation for  the r ada r  engineer .  

specialized to this ca se ,  and curves  f o r  the two probability density 



I 

models as a function of incidence angle will be presented .  
sions for  the p ' s  given in Eqs. ( 5 3 )  a r e  allowed to approach the back- 
scat ter ing limit ( i . e* ,  0,- O i ,  +s - I T )  t o  yield 

The expres-  

The c i r cu la r  polarization backscattering ma t r ix  elements found 
f rom substituting these expressions into Eqs .  (27)  a r e  

The backscattering ma t r ix  element between a rb i t r a ry  l inear  
s t a t e s  as defined and given in Eq. (28)  becomes 

The above equations demonstrate the claim of Hagfors and other 
invest igators  who note that optics techniques applied to ve ry  rough 
su r faces  models  predict  no depolarization for backscat ter ing.  
second and third optics models discussed previously c lear ly  show that 
backscat ter ing can come only from a r e a s  o r  facets on the rough surface 
which a r e  oriented normal  to the incidence direction. This a lso 
accounts for  the appearance of the F r e s n e l  reflection coefficients f o r  
no rma l  incidence in  the above equations. 

The 

Let  u s  now give the resul ts  for  average backscat ter ing c r o s s  
sect ions pe r  unit a r e a  for the two probability density models proposed 
above, remember ing  that no depolarization is predicted.  
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( 5 7 )  

a .  Gaussian su r face  height probability 
function model 

b.  ExDonential surface heieht 
probability function model 

4 6  - - tan tli 
2 S 

e 

The f i r s t  of the above equati Ins has been given previously by 
Hagfors (1964)  while the second i s  presented he re  for  comparison.  
Curves illustrating the dependence of 

U0 

for  the above two models upon angle of incidence, 8 i J  for  various values 
of rms roughness slope, s ,  a r e  presented in F ig .  6 .  

IV. COMPOSITE SURFACES 

A. Explanation 

Natural forces  seldom c rea t e  a "very rough" sur face  satisfying 
the restr ic t ions of the preceding par t .  
having roughness whose height i s  l a rge  compared to  wavelength a lmost  
always also possess  sma l l e r  sca le  roughnesses,  such that the su r face  
is not locally smooth. As examples ,  consider  a n  a r e a  of mountainous 
t e r r a in .  The mountains and valleys alone compr i se  a roughness la rge  

Rough sur faces  a r i s ing  in nature 
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F i g .  6 .  Average incoherent backscattering c r o s s  section p e r  
unit a r e a  fo r  very rough surface s ta t is t ical  model 
v s .  incidence angle f o r  any s e t  of d i rec t  polarization 
s ta tes  for  two surface height J P D F  (Joint Probability 
Density Function) models. Curves a r e  normalized to 
the F r e s n e l  reflection coefficients for  normal  incidence. 

compared to wavelength fo r  frequencies of VHF o r  higher. If no other 
s m a l l e r  roughness were  present,  the analysis of the preceding section 
might  be applied. However, the t r e e s ,  rocks,  and g ras sy  fields also 
p resen t  constitute a roughness whose sca le  compared to wavelength 
m a y  be small. Hence, the tangent plane restr ic t ion and optics approxi- 
mat ion of the preceding par t  cannot be used without c loser  examination. 
The type of su r face  described above, character ized by both la rge  and 
small sca le  roughnesses,  will be called a "composite" surface.  

Let us look again at the chief differences between the average 
incoherent backscat tered power from the slightly rough surface and 
the very  rough sur face  of the preceding p a r t s .  The slightly rough 
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surface,  as shown in F ig .  2, produces a small backscat tered field nea r  
normal  incidence where u i  = 0, but this field m a y  still be significant 
nea r  grazing. As discussed previously the sca t te red  power nea r  graz-  
ing is directly re la ted to the amount of sur face  roughness spec t r a l  
s t rength at higher spat ia l  f requencies;  in par t icular ,  at and near  
frequency 2k0 r ad ians /me te r .  On the other hand, backscattering 
f rom ve ry  rough su r faces ,  as seen  in  F i g .  6, is much larger nea r  
normal  incidence (ei = 0 )  but falls off rapidly away f rom normal .  

The suggestion to be put for th  he re  is that both the la rge  sca le  
and the small sca le  roughness contribute significantly to the scat ter ing 
f rom natural ,  composite su r faces .  N e a r  the specular  direct ion (i .e ., 
8, = ei,  +s = 0) scat ter ing of the optics type, predicted by the very  
rough surface theories,  predominates.  
ably removed f rom this direction, however the smaller but pers i s ten t  
sca t te red  power is due to  the slight roughness present  on top of the 
l a r g e r  roughnesses.  

At scat ter ing angles consider-  

In fact, to  a first approximation, one may  mere ly  add the 
average incoherent scat ter ing c r o s s  sections f rom the very  rough 
sur face  model t o  that of the slightly rough sur face  model  to obtain 
the total  composite rough sur face  scat ter ing c r o s s  section. 
heuris t ic  and physically intuitive proof of this s ta tement  will  be given 
he re ,  but for a m o r e  exact-albeit  mathematically involved-proof, one 
can consult two recent  Soviet a r t ic les  of Szmenov (1966) and Fuks (1966). 

An 

Consider first the very  rough surface model of the preceding 
pa r t .  The surface to which it applies is smooth over  regions of the 
o r d e r  of a wavelength. The sca t te red  power is incoherent and con- 
centrated near  the specular  direction because the sur face  slopes a r e  
generally sma l l  and the probability is grea t  that the local  normal  of 
any sur face  point is within a few degrees  of the ver t ical .  
that  a slight roughness “grows” on top of this ve ry  rough but locally 
smooth surface.  This sl ight ‘roughness does not greatly diminish the 
la rge  specular scat ter ing of the very  rough surface,  jus t  as it did not 
diminish greatly the coherent s ca t t e r  of the smooth plane over which 
it was imposed in P a r t  2 .  However, in direct ions considerably away 
f r o m  the specular (e .g . ,  near  grazing for  backsca t te r ) ,  where the 
very rough surface model predicts  very  small sca t t e red  power, the 
slight roughness will produce an observable addition to the sca t te red  
power. Since the “very rough” portion of the sur face  has  small s u r -  
face  slopes,  the slight roughness can be approximated to a first o rde r  
as being distributed over a smooth plane in  computing the local angle 
of incidence. 
less) in the local angle of incidence, O i ,  (due to  loca l  variations in the 

Now assume 

As seen  in F i g s .  2 and 3 ,  small changes ( say  15” o r  
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underlying very rough sur face  slope) do not produce a marked  change 
in  backscat ter ing c r o s s  section, so long as the spec t ra l  strength of 
the superimposed slight roughness is fairly constant out to approxi- 
mately 'z ko r ad ians /me te r .  Hence the two average incoherent sca t -  
ter ing c r o s s  sections may be simply added together,  assuming the 
same incidence and scat ter ing angles (tli, e,, $ s )  for  both. 

1 

Actually, two averaging processes  mus t  take place.  The slight 
roughness height variable and the la rge  roughness height variable are 
averaged separa te ly .  This necessitates the additional res t r ic t ion that 
the two different sca les  of roughness are  statist ically independent. 
Such is generally t rue  when the t w o  roughness sca l e s  a r e  formed by 
different natural  p rocesses .  F o r  example,  mountains and valleys 
are usually formed by an entirely different process  than i s  the 
vegetation cover;  hence the assumption of s ta t is t ical  independence 
between the distribution of these natural  roughnesses,  although not 
perfect ,  generally s e e m s  reasonable.  Since the slight roughness and 
l a rge  roughness a r e  statist ically independent and each alone produces 
s t r ic t ly  an incoherent sca t te red  power, w e  can  pe r fo rm the averaging 
of each  separately and mere ly  add the powers f rom each.  

The above explanation i s  meant to be intuitive ra ther  than 
r igorous.  
mat ica l  confusion. Mathematical  proof is satisfying, however, and 
can  be found in the above mentioned Soviet re fe rences .  
the necessary  restr ic t ions are those given in the preceding two pa r t s ,  
along with the one mentioned in the preceding paragraphs .  Neglected 
in  this  explanation is any possible roughness scale  which i s  of in te r -  
mediate  s ize  
rough o r  the slightly rough category. 
have a roughness Component whose scale  i s  of this o rde r ,  the model 
h e r e  mus t  be expected to  give results which deviate somewhat f rom 
m e a s u r e d  values .  
where  the scat ter ing c r o s s  section for  the slight roughness alone i s  
approximately equal to that fo r  the la rge  sca le  roughness.  In general  
the predicted resu l t  will be too small ,  because any intermediate sca le  
roughness will tend to add another scat tered field component which 
wil l  be significant in  this region. 
intermediate  sca le  roughness, this component cannot a t  p resent  be 
taken into account quantitatively. 

It i s  meant  to  provide physical insight ra ther  than mathe-  

Generally 

such that i t  does not fall entirely e i ther  in the very  
Since mos t  natural  surfaces  

This deviation i s  expected for scat ter ing geometr ies  

Since no known theory is valid for  

Western w r i t e r s  have attempted to t r ea t  composite rough s u r -  
f a c e s .  
problem by a physical optics model. 
apply to a slight roughness scale since i t  is based on an optics formulation. 

Beckmann (1965) and Hayre and Kaufman (1965) both t r e a t  this 
Their analysis does not t ruly 
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This i s  evident f r o m  the resul ts ,  which a r e  functionally the same  as 
f o r  the ve ry  rough su r face  with a single la rge  sca le  of roughness.  
only difference is that the m e a n  square slope,  s 2 ,  appearing in  their  
resu l t s  f o r  the composite su r face  is wri t ten in t e r m s  of the sun1 of the 
mean  square  slopes of each of the roughness sca les  present .  Their  
resu l t s  a r e  hence valid fo r  all roughness sca les  down t o  those which 
can no longer be t rea ted  by their  optics formulation ( i  . e . ,  which no 
longer sat isfy the restr ic t ions of P a r t  3 ) .  They cannot apply to  s u r -  
faces which include a t rue  slight roughness component, however.  

The 

Radar  experimentalists have i n  the past  attempted to break the 
measu red  direct  polarized backscat ter  c r o s s  section vs  . incidence 
angle into two regions.  
specular  region, and i t  was generally agreed to be predicted by the 
optics theories and resu l t s  of P a r t  3 .  
region near  grazing was t e rmed  the "diffuse" region, and there  has  
been no general  agreement  to date on a sat isfactory explanation for  
i ts  existence.  Various investigators have attempted to fit empir ica l  
curves  to this component; among the postulated a r e  cos  O i ,  cos  d ; ,  
and s t i l l  o thers .  Hagfors (1967)  has  suggested a model  consisting of 
randomly oriented dipoles as accounting for  this component. This 
i s  one of a large c lass  of geometr ical  models  with distributions of 
individual s ca t t e r e r s  which lie outside the c l a s s  of continuous s u r -  
faces we have been considering. ( S e e  Pe&e, 1967). 

The region near  normal  w a s  called the 

The "tail" of the echo, o r  that 

3 / 2  

W e  wish to suggest he re  that this "diffuse" component i s  pro-  
duced by the presence of slight and intermediate  roughness sca les  
and i s  predicted to a f i r s t  o r d e r  by the models  of P a r t  2 .  W e  offer  
predicted curves based on the composite model presented he re  and 
compared them with measu red  resul ts  for backsca t te r .  

The explanation for  the depolarized backscat tered component 
f rom composite sur faces  is m o r e  complex, however.  The optics 
theories  predict no r e tu rn .  To the f i r s t  o r d e r ,  the slightly rough 
model studied he re  a l so  indicates no depolarized r e tu rn  for the ve r t i -  
c a l  and horizontal s ta tes ;  depolarization fo r  the c i r cu la r  s ta tes  does 
appear ,  but is  absent at normal  incidence. The higher o r d e r  t e r m s ,  
f o r  example the second t e r m  as calculated by Valenzuela, do show 
depolarization, even for  the ver t ical  and horizontal  s t a t e s .  As the 
roughness scale inc reases  with respec t  to wavelength f rom slight to 
intermediate ,  these higher o rde r  t e r m s  containing depolarization 
effects become non-negligible. 
down as the sniallness pa rame te r s  approach unity, the contribution 
of the intermediate scale  of roughness cannot bc- calclllated. 

Since the per turbat ion theory breaks  

It i s  c l ea r  
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f rom the t rend  of the higher order  t e r m s ,  however, that they will con- 
tr ibute significantly to  both the polarized and depolarized components.  
It is our conclusions, therefore ,  that depolarization for  backscat ter  i s  
produced by two mechanisms:  (a) the slight and intermediate  roughness 
sca l e s  just  discussed,  and (b) multiple reflections from suitably 
oriented sur face  elements  of the la rge  scale  roughness for  sur faces  
where the reflection coefficients are polarization dependent. 

To i l lustrate  the predictions of the composite surface model, 
F i g s .  7 provide curves  fo r  horizontal and ver t ical  polarization s ta tes  
fo r  a var ie ty  of dielectric constants and model pa rame te r s .  
made  by simply adding the backscattering c r o s s  sections for  the slightly 
rough model  to those of the very rough model .  More  curves  of this type 
can be found in Radar  Cross  Section Handbook (1968). 
the measu red  c r o s s  section of the s e a  surface on a calm day made 
fo r  the ver t ical  and horizontal  s ta tes ;  these a r e  a l so  taken from the 
above re ference .  The similari ty is  convincing. Note that none of 
these  curves  represents  a depolarized component; the received 
polarization s ta te  i s  in each case the s a m e  as the t ransmit ted.  

They a r e  

F igure  8 shows 

F o r  the c i rcu lar  polarization s ta tes ,  one can  construct  the 

They a r e  not shown here  but 
s a m e  type of curves ,  which results a r e  s o r t  of a superposit ion of the 
curves  of F ig .  3 with those of F i g .  6 .  
m a y  be found in  the preceding reference.  
that  the curve representing the depolarized component i s  not actually 
a composite,  because the very rough surface contribution to back- 
sca t te r ing  in this c a s e  zero: only the slight roughness produces de-  
polarization. 
to  a measu red  se t  f rom the lunar surface at A, = 68 cm in F i g .  9 .  
Measured  resu l t s  were  taken from the work of Evans and Pettingill 
(1963), and were  normalized with respec t  to the measu red  c r o s s  section 
of the ent i re  moon a t  this frequency. 
selected on the basis  of best  fit. F r o m  the model for  this best  fit, the 
following pa rame te r s  for the l u n a r  surface a r e  indicated: E r  = dielectric 
constant = 2 . 9 ,  t an - l s l  = large sca le  roughness slope = 1 2 " ,  h2 = rms 
slight roughness height = 1 cm, tan- 's2 = slight roughness slope = 270. 
The comparison of the measured and predicted depolarized components 
shows lack of agreement  near  normal  incidence. 
the following reasons:  ( i )  Hagfors (1967) repor t s  that the ability to i so-  
la te  one measu red  c i rcu lar  state from the other was probably not 
g r e a t e r  than 18 dB.  
is very  strong, mos t  of the ."measured" depolarized component may 
actually be the polarized component. ( i i )  The intermediate sca le  rough- 
n e s s ,  which cannot be accounted f o r  by the theory, mos t  likely produces 
depolarization. As mentioned previously, this effect is likely to  appear 
fu r the r  away from grazing, i . e . ,  nea r  normal  incidence. 

It should be noted, however, 

One s e t  of curves for  c i rcu lar  polarization i s  compared 

The se t  of model curves  w a s  

This i s  expected for  

Hence near normal  where the polarized component 
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height probability density model.  
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Fig .  8.  Measured average back- 
scattering c r o s s  section 
per  unit a r e a  f rom r e -  
latively calm s e a  sur face  
at X-band vs. incidence 
angle for  ver t ica l  and 
ho ri zont a1 polar i zati on 
s ta tes .  
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V. ROUGH SPHERICAL SURFACE - 
BACKSCATTERING CROSS SECTION 

A. Introduction 

The past  sections have der ived the average incoherent scat ter ing 
c r o s s  section per  unit area for  a rough planar  sur face ,  i . e . ,  a sur face  
whose mean  value is a plane.  In this  sect ion we will  extend these 
resu l t s  to a rough spher ica l  sur face .  
tive, f o r  exarnple, of a planetary surface,  o r  of many spher ica l  
satel l i tes  of the Echo I and 11 var ie ty  whose su r faces  are somewhat 
rough. 
spher ica l  surface,  we  understand that the en t i re  sphe re  is i m m e r s e d  
simultaneously in the illuminating f ie ld .  
example,  i n m a n y  of the planetary r a d a r  s tudies  where  a shor t  pulse 
sweeps past  the planet, illuminating only an  annular a r e a  at a t ime .  

Such a situation is representa-  

In defining the average backscat ter ing c r o s s  sect ion of a rough 

This may  not be the case ,  f o r  
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The r e su l t s  of the preceding sections can be used to obtain the 
incoherent backscattering c ros s  sections for both very  rough and slightly 
rough sphe res .  Fur thermore ,  f o r  the slightly rough sphere,  there  will  
be a significant coherent component due predominantly to reflection f rom 
the front  cap, and this  will also be est imated.  

It is assumed that the radius of the sphere  AR, is much l a r g e r  
than both the wavelength, X, and roughness height correlat ion length, 
1 .  It is fur ther  assumed that the sphere  is l a rge  enough and its 
material lossy  enough that waves entering the sphere  do not fur ther  
contribute to the scat ter ing.  
preceding sections apply. 

In addition, all of the rest r ic t ions of the 
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B Coherent Baclcscatterine Cross  Section 

It was mentioned in Part I that the coherent s ca t t e r  f rom any 
slightly rough sur face  is highly dependent upon the shape of the i l lumi- 
nated surface in the absence of roughness.  The presence  of roughness 
is taken into account by modifying the F r e s n e l  reflection coefficients at 
the surface,  as in Eq. ( 1 ) .  
being coherent and having a non-zero average value, can  be t reated 
jus t  as they would be f r o m  a smooth surface; stationary phase analysis 
predicts  that nearly the ent i re  coherent backscattered field in  this ca se  
comes from the front specular  cap. Hence the average coherent back- 
sca t t e r  c r o s s  section f r o m  a slightly rough spherical  surface becomes 

The reflected complex fields in this case ,  

where 

i s  the Fresne l  reflection coefficient for a smooth planar surface at 
normal  incidence. 
cap is accounted for by the exponential factor involving'the mean  square  
roughness height, h2. 
the slightly rough surface reflection coefficients of Eq. ( 1 )  is valid f o r  
sur faces  having a Gaussian distributed roughness height. One s e e s  
that a s  rrns roughness height i nc reases  to where  koh > 1,  the coherent 
c r o s s  section decreases  rapidly. 

The effect of surface roughness nea r  the specular  

The above resul t ,  having come from the u s e  of 

The polarization s ta tes  of the sca t te red  coherent field above is 
the s a m e  a s  i t  would be in the absence of roughness,  i .e ., there  is no 
depolarization predicted.  

C. Average Incoherent Backscattering Cross  
Section - Slightly Rough Surface 

The average incoherent backscattering c r o s s  sections fo r  a 
slightly rough spherical  surface a r e  computed from 
resu l t s  for  a rough planar sur face .  Use is made  of 

the preceding 
the property of 

52  



I incoherent power which permi ts  one to  m e r e l y  add the power backscat-  
t e r ed  f rom one portion of the surface to  that f rom another portion, 
r a the r  than adding the complex sca t te red  fields themselves .  
that  c 

the backscattering c r o s s  section f o r  a mean  spher ica l  a r e a  e Y+ ement  Then 
sur face  a r e a  (where O s  = 0i and +s = TT in the equations f o r  r 

dA = Ak s in  8 i  d0i d+ is the product of dA and u 
backscat ter ing c r o s s  section is then determined l6 y integrating over  the 
en t i re  illuminated hemisphere,  i .e.,  

Recall  
is the average incoherent backscattered power p e r  un i t  mean  

Y b  0 

. The total  average 

where  the integration over  + has been per formed s ince the integrand is 
not a function of 9. The spherical  coordinate sys tem has been chosen 
h e r e  so  that the polar  axis coincides with the direction of propagation, 
making the polar  angle 8i  also the angle of incidence upon the spherical  
su r f ace .  

F o r  the aligned and crossed  incident and received l inear  polari-  
zation s ta tes ,  the expressions which mus t  be substituted into the above 
equation for  u v~ a r e  those given in  Eqs.  (19)  and ( 3  1 ) .  
over  + corresponds to  the integration over q which was already p e r -  
formed in  deriving Eqs .  (31 ) .  
above equation can only be performed numerically.  
sect ions normalized as 

The integration 

The integration over  0 i  demanded in the 
The result ing c r o s s  

a r e  plotted in  F ig .  10 vs  kol f o r  var ious values of sur face  dielectr ic  
constant .  This is done fo r  both the aligned and c rossed  l inear  s ta tes  
( represent ing  the polarized and depolarized re turn)  and for the Gaussian 
and exponential surface height correlat ion coefficient models .  Note that 
as kol becomes l a r g e r  the depolarized component becomes s m a l l e r .  
This is expected, since l a r g e r  kol corresponds to a smoother  sur face .  
Note that the terminology ver t ical  and horizontal  s ta tes  have no signifi- 
cance when r e fe r r ed  to a sphere.  

F o r  the c i r cu la r  polarization s ta tes ,  the appropriate curves  a r e  
found i n  Radar  Cross  Section Handbook (1968). 
with those for  the l inear  s ta tes  in  the cases  of the polarized components; 

They a r e  near ly  identical 
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1.0 10.0 100.0 0.01 0. I 

Fig.  l o a .  Average incoherent backscat ter ing c r o s s  section f o r  
slightly rough spher ica l  sur face  of mean  radians Ar 
as a function of koP. C r o s s  sec t ion  is normalized t o  
TT Ar ko'h . Linear  polarization s t a t e s ,  upper  curves  
represent  s ame  sense received as t ransmi t ted ,  lower 
curves - perpendicular s ense  rece ived .  (a) Gaussian 
height correlat ion coefficient model .  
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and plotted as a function of the arctangent of the rms roughness slope, 
s ( i . e . ,  s = ( 2 h / I ) ) .  
roughness gain of the sphere .  
probability density function models discussed in  P a r t  111. 
however, i s  the fact that as roughness increases ,  the backscattering 
c r o s s  sections become l a r g e r  than that for  a smooth sphere .  

This function is sometimes r e fe r r ed  to as the 
The two curves represent  the two 

Noteworthy, 

It is seen that a s  the surface becomes smooth ( i . e . ,  s - 0) ,  the 
backscattering c r o s s  sections do indeed approach those for  a smooth 
sphere  i . e . ,  u = ~ r A k  IR(O)IZ . The figures a r e  of questionable 
validity f o r  tan-l  s > 45" because of the rest r ic t ions under which 
they were  der ived.  F o r  typical surface slopes much beyond 45", 
shadowing and multiple scattering a r e  no longer negligible. 
roughness slope region l e s s  than 45" the increase  in scat ter ing c r o s s  
section from the smooth sphere l imit  i s  not appreciable.  
important conclusion for  planetary surface backscat ter  can be drawn: 

In the 

Hence an 

Large scale surface roughness for all pract ical  purposes 
can be neglected and the total average backscattering c r o s s  
section can be taken to be that for a smooth sphere,  
u = ITA% 1R(0)12 . 

Consequently, knowing the approximate radius of the body, AR, an 
es t imate  of the surface dielectric constant can be made from a 
measurement  of u / 1~ Ah ; for  the moon for  the range 5 cm < )c < 100 c m  
one obtains approximately 1 R(0) I 
implies  an effective dielectric constant of c r  = 1.9. 

= 0 07. Such a value of I R(0)  1 

E.  Average Incoherent Backscattering Cross  
Section - Composite Surface 

As mentioned previously, mos t  natural  surfaces  consists of 
roughness sca les  both l a r g e r  and sma l l e r  than wavelength. As shown 
i n  P a r t  IV, one can add the incoherent backscattering c r o s s  sections of 
the preceding sections (presented in F igs .  10 and 11)  to obtain the 
effective total  backscattering c ros s  section of the composite sur face .  
However, the backscattering c ross  section for  the slight roughness, 
being proportional to ko2h2, is  small, since this parameter  is r e -  
s t r ic ted  to small values.  
significantly to the backscattered power for  the polarized received com- 
ponent. 

Hence only the large scale  roughness contributes 

On the other hand, since only the slight roughness scale  i s  
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responsible fo r  the depolarized component, according to these models,  
it alone may be the bes t  available es t imate  f o r  this component. 

VI. SUMMARY 

We have attempted to se t  for th  what we believe to be the soundest 
analyses and solutions f o r  rough surface scat ter ing that are presently 
available. In addition, we have enumerated the restr ic t ions under which 
the resu l t s  a r e  valid. 
tering mechanism behind the mathematics .  

Finally, we have interpreted physically the sca t -  

A slightly rough sur face  produces s t rong coherent reflection 
nea r  the specular direction and a weaker incoherent s ca t t e r  in other 
direct ions.  An est imate  of the coherent reflection can be computed 
jus t  as i t  i s  f o r  a smooth sur face ,  making use  of the reflection coef- 
ficients of Eq. (1) ;  the resulting scat ter ing pat tern is strongly de- 
pendent upon the shape of the illuminated a r e a  and exhibits a lobe 
s t ruc tu re .  The incoherent s ca t t e r  was dealt with in m o r e  detail  by 
a perturbation technique ra ther  than the l e s s  valid tangent plane approxi- 
mation. It w a s  shown that incoherent sca t te red  power f rom a slightly 
rough sur face  of e i ther  homogeneous ma te r i a l  o r  a perfectly reflecting 
interface is directly proportional to the roughness spec t ra l  densi t ies .  
The highest roughness spec t ra l  components which can affect the process  
a r e  those near 2k0 radians/meters-  
s ca t t e r  near  grazing incidence. 
produce scattering c lose r  to  the specular  direction. 
case  of backscatter,  significant differences ex is t  betwe.en the c r o s s  
sections near  grazing f o r  the ver t ica l  and horizontal s ta tes ;  ver t ical  
t ransmi t  and receive antennas produce considerably m o r e  re turn  than 
horizontal, a fact which i s  confirmed experimentally.  The solutions, 
including only the lowest o rde r  perturbation t e r m s ,  exhibit no de- 
polarization fo r  the ver t ical  and horizontal  s t a t e s .  F r o m  the solutions 
for  ver t ical  and horizontal polarizations,  resu l t s  fo r  the c i rcu lar  s ta tes  
and arb i t ra r i ly  oriented l inear  t ransmi t  and receive s ta tes  a r e  given. 

These a r e  responsible for  back- 
Lower roughness spec t ra l  frequencies 

F o r  the important 

The only presently satisfactory methods fo r  t reat ing very  rough 

A physical interpretat ion of the scat ter ing process  
sur faces  are optics techniques; basic to all of these is the tangent 
plane restr ic t ion.  
can be based upon any of the well  known optics pr inciples .  Three 
techniques ( i . e . ,  physical optics, r ay  optics, and the specular  point o r  
stationary phase principle) all give identically the s a m e  resu l t .  
ing in a given direction takes place as a r e su l t  of sur face  face ts  SO oriented 
that they specularly ref lect .  
backscattered power i s  not depolarized. 

Scat ter-  

As would be expected f rom such a theory,  
Two probability density function 
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models a r e  chosen f o r  the sur face  height; for  both, the curves of back- 
sca t te red  power show strong return nea r  normal  incidence (the specular  
direction) which falls  off rapidly as grazing is approached. 
sur face  height correlat ion coefficient which can be employed with these 
techniques is one which is parabolic in behavior for  small surface 
separat ions.  

The only 

Natural surfaces  which a r e  very rough in  height compared to 
wavelength almost  always have smal le r  scale  roughnesses superimposed; 
these a r e  called composite sur faces .  
rough and very rough sur face  scattering theories together account in 
p a r t  f o r  the re turn .  
instance,  the re turn  i s  dominated by the very rough surface predicted 
sca t t e r .  Near grazing, however, the sma l l e r  roughness sca les  usually 
account fo r  the re turn .  
shown for  these composite models at  various se t  of pa rame te r s  for  the 
ver t ica l  and horizontal polarization s ta tes .  
measu red  data f rom the lunar and s e a  surface.  

As one might expect, the slightly 

In the case  of backscat ter  near  ver t ical ,  for  

Curves f o r  backscattering c r o s s  section a r e  

These are compared with 

Backscatter f r o m  roughened spherical  su r f aces ,  which has 
application to planetary probing and passive satell i te cornmunitations , 
is t rea ted  in P a r t  V .  The coherent and incoherent average backscat-  
ter ing c r o s s  sections a r e  obtained, the la t te r  in graphical form resulting 
f rom a numerical  integration. Very rough spherical  surfaces  a r e  a lso 
t rea ted ,  and i t  is shown that the roughness in this ca se  has little effect 
on the backscat ter  relative to that of a smooth sphere;  in reali ty,  the 
roughness slightly increases  the c r o s s  section. 
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